1.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy.
2.Brain Aperiodic Dynamics
Zhi-Cai HU ; Zhen ZHANG ; Jiang WANG ; Gui-Ping LI ; Shan LIU ; Hai-Tao YU
Progress in Biochemistry and Biophysics 2025;52(1):99-118
Brain’s neural activities encompass both periodic rhythmic oscillations and aperiodic neural fluctuations. Rhythmic oscillations manifest as spectral peaks of neural signals, directly reflecting the synchronized activities of neural populations and closely tied to cognitive and behavioral states. In contrast, aperiodic fluctuations exhibit a power-law decaying spectral trend, revealing the multiscale dynamics of brain neural activity. In recent years, researchers have made notable progress in studying brain aperiodic dynamics. These studies demonstrate that aperiodic activity holds significant physiological relevance, correlating with various physiological states such as external stimuli, drug induction, sleep states, and aging. Aperiodic activity serves as a reflection of the brain’s sensory capacity, consciousness level, and cognitive ability. In clinical research, the aperiodic exponent has emerged as a significant potential biomarker, capable of reflecting the progression and trends of brain diseases while being intricately intertwined with the excitation-inhibition balance of neural system. The physiological mechanisms underlying aperiodic dynamics span multiple neural scales, with activities at the levels of individual neurons, neuronal ensembles, and neural networks collectively influencing the frequency, oscillatory patterns, and spatiotemporal characteristics of aperiodic signals. Aperiodic dynamics currently boasts broad application prospects. It not only provides a novel perspective for investigating brain neural dynamics but also holds immense potential as a neural marker in neuromodulation or brain-computer interface technologies. This paper summarizes methods for extracting characteristic parameters of aperiodic activity, analyzes its physiological relevance and potential as a biomarker in brain diseases, summarizes its physiological mechanisms, and based on these findings, elaborates on the research prospects of aperiodic dynamics.
3.Effects of miR-204-3p inhibitor on epithelial-mesenchymal transition and silicosis fibrosis in silicon dioxide-induced alveolar epithelial cells
Fang CHEN ; Jing YU ; Wenxuan HU ; Yangyang PI ; Xi ZHANG ; Luning WANG ; Ping ZHAO ; Faxuan WANG
Journal of Environmental and Occupational Medicine 2025;42(5):622-629
Background The pathogenesis of silicosis has not been fully elucidated, and microRNAs (miRNA) may be involved in the occurrence and development of silicosis. Objective To investigate the effect of miR-204-3p inhibitor on the epithelial-mesenchymal transition (EMT) process and silicosis fibrosis in silicon dioxide dust-induced alveolar epithelial cells. Methods A co-culture model of macrophages and epithelial cells was established using a Transwell chamber. NR8383 macrophages were seeded into the upper chamber of the Transwell, and RLE-6TN cells were seeded into the lower chamber. After 24 h of culture, the medium in the lower chamber was discarded, washed three times with phosphate-buffered saline (PBS), and replaced with serum-free medium. The cells were divided into four groups: control group, silicosis group, miRNA NC group, and miR-204-3p inhibitor group. The lower chamber was transfected with miRNA NC for the miRNA NC group or the miR-204-3p inhibitor for the miR-204-3p inhibitor group. The lower chambers of the remaining two groups were added by equal amounts of serum-free medium. After 24 h, except for the control group that received an equal volume of serum-free medium, the upper chambers of the remaining three groups were treated with 800 μg·mL−1 silicon dioxide dust. Morphological changes in each group were observed under a microscope. The mRNA and protein expression levels of EMT-related factors, including α-smooth muscle actin (α-SMA), Vimentin, N-Cadherin, and E-Cadherin, were detected by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot. The mRNA and protein expression levels of fibrosis-related factors, including Collagen I, Collagen III, and Fibronectin, were also assessed by RT-qPCR and Western blot. The fluorescence expression intensities of α-SMA, N-Cadherin, and E-Cadherin were evaluated by immunofluorescence. Results The morphological observation revealed that RLE-6TN cells in the control group exhibited a regular oval shape. After treatment with silicon dioxide, the cells predominantly displayed a long spindle shape. Following the intervention with the miR-204-3p inhibitor, the number of long spindle-shaped cells increased, and the intercellular gaps widened. The RT-qPCR results showed that, compared with the control group, the silicosis group exhibited significantly higher relative mRNA expression levels of EMT-related markers (α-SMA, Vimentin, and N-Cadherin) (P<0.05), while the relative mRNA expression level of E-Cadherin was significantly reduced (P<0.05); the relative mRNA expression levels of fibrosis-related markers (Collagen I, Collagen III, and Fibronectin) were also significantly elevated (P<0.05). Compared with the miRNA NC group, the miR-204-3p inhibitor group showed significantly increased relative mRNA expression levels of α-SMA, Vimentin, and N-Cadherin (P<0.05), decreased E-Cadherin mPNA expression (P<0.05), and elevated mPNA expression of Collagen I, Collagen III, and Fibronectin (P<0.05). The Western blot analysis indicated that, compared with the control group, the silicosis group had significantly higher protein expression levels of α-SMA, Vimentin, and N-Cadherin (P<0.05), lower E-Cadherin protein expression (P<0.05), and increased protein expression of Collagen I, Collagen III, and Fibronectin (P<0.05). Compared with the miRNA NC group, the miR-204-3p inhibitor group exhibited significantly elevated protein expression levels of α-SMA, Vimentin, and N-Cadherin (P<0.05), reduced E-Cadherin expression (P<0.05), and increased protein expression of Collagen I, Collagen III, and Fibronectin (P<0.05). The immunofluorescence analysis demonstrated that, compared with the control group, the silicosis group showed enhanced fluorescence intensities of α-SMA and N-Cadherin and reduced fluorescence intensity of E-Cadherin. Compared with the miRNA NC group, the miR-204-3p inhibitor group exhibited increased fluorescence intensities of α-SMA and N-Cadherin and decreased fluorescence intensity of E-Cadherin. Conclusion The miR-204-3p inhibitor may exacerbate the EMT process and silicosis fibrosis in silicon dioxide-induced RLE-6TN cells. miR-204-3p plays a negative regulatory role in silicosis fibrosis.
4.Fast Object Perception in The Subcortical Pathway: a Commentary on Wang et al.’s Paper in Human Brain Mapping (2023)
Hao-Yun MA ; Yu-Yin WEI ; Li-Ping HU
Progress in Biochemistry and Biophysics 2025;52(7):1904-1908
The subcortical visual pathway is generally thought to be involved in dangerous information processing, such as fear processing and defensive behavior. A recent study, published in Human Brain Mapping, shows a new function of the subcortical pathway involved in the fast processing of non-emotional object perception. Rapid object processing is a critical function of visual system. Topological perception theory proposes that the initial perception of objects begins with the extraction of topological property (TP). However, the mechanism of rapid TP processing remains unclear. The researchers investigated the subcortical mechanism of TP processing with transcranial magnetic stimulation (TMS). They find that a subcortical magnocellular pathway is responsible for the early processing of TP, and this subcortical processing of TP accelerates object recognition. Based on their findings, we propose a novel training approach called subcortical magnocellular pathway training (SMPT), aimed at improving the efficiency of the subcortical M pathway to restore visual and attentional functions in disorders associated with subcortical pathway dysfunction.
5.Comparison of the efficacy of remimazolam and propofol in the induction and maintenance of general anesthesia in elderly patients undergoing thoracoscopic lobectomy
Chun LIU ; Juan HU ; Yu HUANG ; Jinqiu YANG ; Junjie LI ; Ping YANG ; Pengfei PAN
China Pharmacy 2025;36(16):2040-2045
OBJECTIVE To compare the clinical efficacy and safety of remimazolam and propofol in general anesthesia induction and maintenance for elderly patients undergoing thoracoscopic lobectomy. METHODS A total of 86 elderly lung cancer patients who underwent thoracoscopic lobectomy at Chongqing University Three Gorges Hospital from February to July 2024 were selected and divided into the propofol group and the remimazolam group according to the randomized numerical table method, with 43 cases in each group. During anesthesia induction, patients in the propofol group and the remimazolam group were intravenously administered 2 mg/kg of Propofol medium- and long-chain fat emulsion injection or 0.25 mg/kg of Remimazolam tosilate for injection, respectively; during anesthesia maintenance, the two groups received intravenous infusion of 6-10 mg/(kg·h) of Propofol medium- and long- chain fat emulsion injection or 1-3 mg/(kg·h) of Remimazolam tosilate for injection, respectively. The anesthesia effects, anesthesia-related indicators, intraoperative opioid and muscle relaxant dosages, Ramsay sedation score, numerical rating scale (NRS) score, and hemodynamic parameters were compared between the two groups, and the occurrence of adverse drug reactions was recorded. RESULTS A total of 41 patients in the propofol group and 43 patients in the remimazolam group completed the trial. The proportion of patients with grade Ⅰ anesthesia effect in the remimazolam group was significantly higher than that in the propofol group, while the proportion of patients with grade Ⅱ anesthesia effect was significantly lower than that in the propofol group (P<0.05). In this group, the disappearance time of eyelash reflex, the time taken for the bispectral index to drop to 60, and the Ramsay sedation scores (2 and 6 hours after operation) were all significantly prolonged or increased, while the recovery time, NRS scores (2 and 6 hours after operation), and the incidence of intraoperative hypotension were all significantly shortened or reduced; moreover, the improvements of the above sedation/NRS scores exhibited a time-dependent pattern within 2 to 24 hours after operation (P<0.05). Compared with before anesthesia induction (T0), the heart rate [except at 2 min after medication (T1), 60 min after anesthesia (T4), and at the end of surgery (T5) in the remimazolam group] and mean arterial pressure [except at T1 in the remimazolam group] of patients in both groups significantly decreased at T1, 5 min after medication (T2), at the start of surgery (T3), T4, and T5 (P<0.05). Meanwhile, regional cerebral oxygen saturation significantly increased in both groups. Furthermore, the heart rate and mean arterial pressure of patients in the remimazolam group were significantly higher than those in the propofol group at T1, T2 and T4 (P<0.05). No statistically significant differences were observed between the two groups in terms of postanesthesia care unit stay time, dosage of opioids and muscle relaxants, regional cerebral oxygen saturation, or peripheral oxygen saturation at various time points (P>0.05). CONCLUSIONS Compared to propofol, remimazolam demonstrates superior anesthesia effects when used for the induction and maintenance of general anesthesia in elderly patients undergoing thoracoscopic lobectomy. It not only provides more stable intraoperative hemodynamics and shortens the postoperative recovery time but also effectively reduces the incidence of intraoperative hypotension.
6.The preliminary therapeutic effect of endoscopic ultrasound-guided tissue adhesive injection with the assistance of metal clips in treatment of cirrhotic patients with gastric varices and gastric-renal shunt
Jiali MA ; Zhenglin AI ; Julong HU ; Yu JIANG ; Yuling ZHOU ; Xiuxia LIANG ; Hongshan WEI ; Ping LI
Journal of Clinical Hepatology 2024;40(4):734-738
ObjectiveTo investigate the safety and efficacy of endoscopic ultrasound-guided tissue adhesive injection with the assistance of metal clips in the treatment of cirrhotic patients with gastric varices and gastric-renal shunt (GRS). MethodsThe patients who attended Beijing Ditan Hospital, Capital Medical University, due to liver cirrhosis and gastric varices from February to June 2023 were enrolled, and all patients were confirmed to have GRS and received endoscopic ultrasound-guided tissue adhesive injection with the assistance of metal clips. The primary evaluation index was alleviation or disappearance of varicose veins after surgery, and the secondary evaluation indices were surgical completion and complications. ResultsA total of 11 patients were enrolled in this study, among whom there were 7 male patients and 4 female patients, with a median age of 55 years. Of all patients, 1 had Child class A liver function, 7 had Child class B liver function, and 3 had Child class C liver function. The maximum (median) diameter of the shunt was 8 mm, and the minimum (median) diameter of the shunt was 4 mm. The median blood flow velocity of the target vessel was 11 cm/s before treatment and 5 cm/s after occlusion with metal clips. The median amount of tissue adhesive injected was 2 mL, and the amount of lauromacrogol used was 1 mL. Disappearance of blood flow signals was observed in all patients after surgery (100%), and the success rate of surgery was 100%. No patient experienced rebleeding after follow-up for 6 weeks. Gastroscopy at 1 month after surgery showed that gastric varices were eradicated or almost disappeared in 9 patients and were alleviated in 2 patients. ConclusionEndoscopic ultrasound-guided tissue adhesive injection with the assistance of metal clips is a feasible, safe, and effective treatment method for cirrhotic patients with gastric varices and GRS.
7.Recent advances in drug screening methods of SARS-CoV-2 spike protein
Li-de HU ; Chuan-feng LIU ; Ping LI ; Guan-yu DONG ; Xin-yong LIU ; Peng ZHAN
Acta Pharmaceutica Sinica 2024;59(2):298-312
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a serious impact on global public health and the economy. SARS-CoV-2 infiltrates host cells
8.In vivo distribution of Cornus cervi Colla and tracer kinetic analysis of its components that enter the blood and bone
Yanan HU ; Haitao DU ; Yang YU ; Limin DONG ; Tianyuan JING ; Wu YIN ; Ping WANG
Chinese Journal of Tissue Engineering Research 2024;28(28):4441-4446
BACKGROUND:Our previous studies found that the polypeptide of Cornus cervi Colla can promote bone growth,which has a good application prospect in the treatment of bone diseases.However,how Cornus cervi Colla works in the body and the principle are not clear. OBJECTIVE:To study the in vivo distribution and tracing of Cornus cervi Colla using fluorescence labeling and tracer technique. METHODS:Cornus cervi Colla was fluorescently labeled using fluorescein isothiocyanate,and the labeling results were detected by fluorescence imaging and UV spectral scanning.Successfully labeled Cornus cervi Colla was injected into mice by gavage,and the absorption of Cornus cervi Colla into blood was detected by laser confocal microscopy,and the distribution of Cornus cervi Colla in mice was detected by small animal in vivo imager.The distribution of Cornus cervi Colla in the mice was detected by laser confocal microscopy.Samples were taken from serum and bone at the time of the strongest fluorescence,and gel electrophoresis was carried out on serum and bone tissue protein solutions,and the components of Cornus cervi Colla absorbed into target organs were determined by secondary mass spectrometry. RESULTS AND CONCLUSION:The fluorescent markers were successfully separated by dextran gel chromatography,and the fluorescence imaging and ultraviolet spectrum scanning proved that the labeling was successful,and the fluorescence substitution degree of FITC-labeled Cornus cervi Colla was 0.953%.The fluorescence intensity of the components of Cornus cervi Colla in the blood showed that Cornus cervi Colla was most distributed in serum after oral administration for 2 hours.The fluorescence images of mice at different times were the same as those of bilateral femur and tibia,indicating that Cornus cervi Colla could play a role by entering the bone.Compared with UniProt database,secondary mass spectrometry showed that the peptide was a characteristic fragment of decorin.It is proved that decorin in Cornus cervi Colla can enter the bone to play a therapeutic role.
9.Transcutaneous Electrical Acupoint Stimulation Promotes PGC-1α Mediated Mitochondrial Biogenesis and Antioxidant Stress to Protect Cognitive Function in Vascular Dementia Rats
Ji-Liang KANG ; Ke HU ; Jun-Yue LU ; Zi-Wei HU ; Biao-Ping XU ; Xiao-Mao LI ; Jun-Jie ZHOU ; Yu JIN ; Min TANG ; Rong XU ; You-Liang WEN
Progress in Biochemistry and Biophysics 2024;51(5):1191-1202
ObjectiveThe purpose of this study was to investigate the effects of transcutaneous electrical acupoint stimulation (TEAS) on cognitive function of vascular dementia (VD) rats and its mechanism. MethodsVD rat model was established by modified two-vessel occlusion (2-VO). After modeling, TEAS and electroacupuncture (EA) were used to stimulate Baihui and Zusanli points of rats respectively for 14 d. After treatment, novel object recognition test, Morris water maze test, and Y maze test were used to evaluate the spatial memory and learning ability of rats. Hematoxylin and eosin staining was used to observe the morphology of hippocampal neurons. Transmission electron microscopy was used to observe the ultrastructure of hippocampal mitochondria. Enzyme-linked immunosorbent assay kits were used to detected the levels of SOD, CAT, GSH-Px, MDA and ROS in serum of rats. Western blot was used to detect the expression of PGC-1α, TFAM, HO-1, NQO1 proteins in the hippocampus, Keap1 protein in the cytoplasm and Nrf2, NRF1 proteins in the nucleus. ResultsAfter treatment for 14 d, compared to the model group, the escape latency of VD rats decreased, while the discrimination index, the times of rats crossing the original platform area, the residence time in the original platform quadrant, and the percentage of alternation increased. TEAS can improve the structure of hippocampal neurons and mitochondria of VD rats, showing that neurons were arranged more regularly and distributed more evenly, nuclear membrane and nucleoli were clearer, and mitochondrial swelling were reduced, mitochondrial matrix density were increased, and mitochondrial cristae were more obvious. The levels of SOD, GSH-Px and CAT in serum increased significantly, while the concentration of MDA and ROS decreased. TEAS also up-regulated the expression levels of PGC-1α TFAM, NQO1 and HO-1 proteins in the hippocampus and Nrf2, NRF1 proteins in the nucleus, but down-regulated the Keap1 protein in the cytoplasm. ConclusionTEAS can improve cognition, hippocampal neurons and mitochondrial structure of VD rats, and the effect is better than EA. The mechanism may be the activation of PGC-1α mediated mitochondrial biogenesis and antioxidant stress, which also provides a potential therapeutic technology and experimental basis for the treatment of VD.
10.Value of serum LXA4 in monitoring bacterial load and progression of anti-tuberculosis treatment in patients with pulmonary tuberculosis
WANG Shan ; GAO Yu ; LIU Hongyan ; JI Wenlan ; HU Ping
China Tropical Medicine 2024;24(1):92-
Objective To explore the potential value of serum lipoxin A4 (LXA4) in monitoring bacterial load and anti-tuberculosis treatment progression in patients with pulmonary tuberculosis (PTB). Methods From January 2021 to January 2022, forty patients with active PTB, who were admitted to Shaanxi Provincial Tuberculosis Prevention and Control Hospital, were selected as the active PTB group, 38 patients with latent tuberculosis infection (LTBI) were selected as the LTBI group, and 28 healthy volunteers who underwent physical examination in our hospital during the same period were included as the healthy control group. The active PTB patients received a 2-month standard anti-tuberculosis chemotherapy, while the other two groups were untreated. Fasting venous blood was drawn from the three groups at enrollment (baseline), after 2 months of treatment, and upon the completion of 6 months of treatment in the active PTB group to measure serum LXA4 levels using enzyme-linked immunosorbent assay (ELISA). The relationship between serum LXA4 level and clinical manifestations, bacterial load, chest imaging manifestations, and treatment progress was analyzed. Results At baseline, serum LXA4 levels in the active PTB group, LTBI group, and healthy control group were [397.72 (210.68, 573.00)], [178.18 (108.17, 271.87)], and [131.06 (76.24, 166.04)] pg/mL, respectively. The levels in the active PTB and LTBI groups were significantly higher than those in the healthy control group, with statistical significance (P<0.01). According to the grading of acid-fast bacilli (AFB) sputum smears at diagnosis, baseline serum LXA4 level increased in the active PTB group with AFB sputum smear grade (P<0.001), and there was a positive correlation between serum LXA4 level and sputum smear grade (rs=0.209, P=0.003). After 6 months of treatment, the serum LXA4 level in the active PTB group was lower than the baseline value (P=0.002). The serum LXA4 level can predict treatment progress, with a baseline sensitivity of 55.0% (22/40), and after 6 months of treatment, 8 patients (20.0%) still showed positive serum LXA4 levels. Conclusions Serum LXA4 may be a useful biomarker for monitoring the progression of PTB treatment.

Result Analysis
Print
Save
E-mail