1.Pharmacokinetic study of 3 blood-absorbed components of Xiangshao sanjie oral liquid in rats with hyperplasia of mammary gland
Yu ZHANG ; Jiaming LI ; Dan PENG ; Ruoqiu FU ; Yue MING ; Zhengbi LIU ; Jingjing WANG ; Shiqi CHENG ; Hongjun XIE ; Yao LIU
China Pharmacy 2025;36(6):680-685
OBJECTIVE To explore the pharmacokinetic characteristics of 3 blood-absorbed components of Xiangshao sanjie oral liquid in rats with hyperplasia of mammary gland (HMG). METHODS Female SD rats were divided into control group and HMG group according to body weight, with 6 rats in each group. The HMG group was given estrogen+progesterone to construct HMG model. After modeling, two groups were given 1.485 g/kg of Xiangshao sanjie oral liquid (calculated by crude drug) intragastrically, once a day, for 7 consecutive days. Blood samples were collected before the first administration (0 h), and at 5, 15, 30 minutes and 1, 2, 4, 8, 12, 24 hours after the last administration, respectively. Using chlorzoxazone as the internal standard, the plasma concentrations of ferulic acid, paeoniflorin and rosmarinic acid in rats were detected by UPLC-Q/TOF-MS. The pharmacokinetic parameters [area under the drug time curve (AUC0-24 h, AUC0-∞), mean residence time (MRT0-∞), half-life (t1/2), peak time (tmax), peak concentration (cmax)] were calculated by the non-atrioventricular model using Phoenix WinNonlin 8.1 software. RESULTS Compared with the control group, the AUC0-24 h, AUC0-∞ and cmax of ferulic acid in the HMG group were significantly increased (P<0.05); the AUC0-24 h, AUC0-∞ , MRT0-∞ , t1/2 and cmax of paeoniflorin increased, but there was no significant difference between 2 groups (P>0.05); the AUC0-24 h and MRT0-∞ of rosmarinic acid were significantly increased or prolonged (P<0.05). C ONCLUSIONS In HMG model rats, the exposure of ferulic acid, paeoniflorin and rosmarinic acid in Xiangshao sanjie oral liquid all increase, and the retention time of rosmarinic acid is significantly prolonged.
2.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
3.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
4.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
5.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
6.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
7.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
8.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
9.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
10.Construction of a predictive model for the efficacy of SNRI antidepressants in inpatients with moderate and severe depression based on machine learning
Xuetao LIU ; Yang LIU ; Hongjian LI ; Jianhua WU ; Siming LIU ; Ming JIAO ; Luhai YU
China Pharmacy 2025;36(15):1936-1941
OBJECTIVE To construct a prediction model for the efficacy of serotonin-norepinephrine reuptake inhibitor (SNRI) in inpatients with moderate and severe depression by using a machine learning method. METHODS The case records of inpatients with moderate and severe depression treated with SNRI antidepressants were collected from a third-grade class-A hospital in Xinjiang from January 2022 to October 2024; those patients were divided into effective group and ineffective group based on the Hamilton depression scale-24 score reduction rate. After screening the characteristic variables related to the therapeutic efficacy of SNRI drugs through LASSO regression, five prediction models including support vector machine, k-nearest neighbor, random forest, lightweight gradient boosting machine and extreme gradient boosting were constructed using the training set. Bayesian optimization was used to adjust the hyperparameters of these models. The performance of the models was evaluated in the validation set to select the optimal model. The Shapley additive explanations method was used to perform explainable analysis on the best model. RESULTS The medical records from 355 hospitalized patients with moderate and severe depression were collected, comprising 285 cases in the effective group and 70 cases in the ineffective group, resulting in an overall therapeutic response rate of 80.28%. After feature variable screening, five characteristic variables for therapeutic efficacy were obtained, including Hamilton anxiety scale, blood urea nitrogen, combination of anti-anxiety drugs, drinking history, and first onset of the disease. Compared with other models, the random forest model performed the best. The area under the receiver operating characteristic curve was 0.85, the area under the precision-recall curve was 0.87, the accuracy was 0.74, and the recall rate value was 0.75. CONCLUSIONS The random forest model constructed based on five characteristic variables demonstrates potential for predicting the therapeutic efficacy of SNRI antidepressants in hospitalized patients with moderate and severe depression.

Result Analysis
Print
Save
E-mail