1.Clinical Safety Monitoring of 3 035 Cases of Juvenile Feilike Mixture After Marketing in Hospital
Jian ZHU ; Zhong WANG ; Jing LIU ; Jun LIU ; Wei YANG ; Yanan YU ; Hongli WU ; Sha ZHOU ; Zhiyu PAN ; Guang WU ; Mengmeng WU ; Zhiwei JING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):194-200
ObjectiveTo explore the clinical safety of Feilike Mixture (FLK) in the real world. MethodsThe safety of all children who received FLK from 29 institutions in 12 provinces between January 21,2021 and December 25,2021 was evaluated through prospective centralized surveillance and a nested case control study. ResultsA total of 3 035 juveniles were included. There were 29 research centers involved,which are distributed across 12 provinces,including one traditional Chinese medicine (TCM) hospital and 28 general hospitals. The average age among the juveniles was (4.77±3.56) years old,and the average weight was (21.81±12.97) kg. Among them,119 cases (3.92%) of juveniles had a history of allergies. Acute bronchitis was the main diagnosis for juveniles,with 1 656 cases (54.46%). FLK was first used in 2 016 cases (66.43%),and 142 juvenile patients had special dosages,accounting for 4.68%. Among them,92 adverse drug reactions (ADRs) occurred,including 73 cases of gastrointestinal system disorders,10 cases of metabolic and nutritional disorders,eight cases of skin and subcutaneous tissue diseases,two cases of vascular and lymphatic disorders,and one case of systemic diseases and various reactions at the administration site. The manifestations of ADRs were mainly diarrhea,stool discoloration,and vomiting,and no serious ADRs occurred. The results of multi-factor analysis indicated that special dosages (the use of FLK)[odds ratio (OR) of 2.642, 95% confidence interval (CI) of 1.105-6.323],combined administration: spleen aminopeptide (OR of 4.978, 95%CI of 1.200-20.655),and reason for combined administration: anti-infection (OR of 1.814, 95%CI of 1.071-3.075) were the risk factors for ADRs caused by FLK. Conclusion92 ADRs occurred among 3 035 juveniles using FLK. The incidence of ADRs caused by FLK was 3.03%,and the severity was mainly mild or moderate. Generally,the prognosis was favorable after symptomatic treatment such as drug withdrawal or dosage reduction,suggesting that FLK has good clinical safety.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5. Effects of Tao Hong Si Wu decoction on IncRNA expression in rats with occlusion of middle cerebral artery
Li-Juan ZHANG ; Chang-Yi FEI ; Chao YU ; Su-Jun XUE ; Yu-Meng LI ; Jing-Jing LI ; Ling-Yu PAN ; Xian-Chun DUAN ; Li-Juan ZHANG ; Chang-Yi FEI ; Chao YU ; Su-Jun XUE ; Yu-Meng LI ; Jing-Jing LI ; Xian-Chun DUAN ; Dai-Yin PENG ; Xian-Chun DUAN ; Dai-Yin PENG
Chinese Pharmacological Bulletin 2024;40(3):582-591
Aim To screen and study the expression of long non-coding RNA (IncRNA) in rats with middle cerebral artery occlusion (MCAO) with MCAO treated with Tao Hong Si Wu decoction (THSWD) and determine the possible molecular mechanism of THSWD in treating MCAO rats. Methods Three cerebral hemisphere tissue were obtained from the control group, MCAO group and MCAO + THSWD group. RNA sequencing technology was used to identify IncRNA gene expression in the three groups. THSWD-regulated IncRNA genes were identified, and then a THSWD-regu-lated IncRNA-mRNA network was constructed. MCODE plug-in units were used to identify the modules of IncRNA-mRNA networks. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) were used to analyze the enriched biological functions and signaling pathways. Cis- and trans-regulatory genes for THSWD-regulated IncRNAs were identified. Reverse transcription real-time quantitative pol-ymerase chain reaction (RT-qPCR) was used to verify IncRNAs. Molecular docking was used to identify IncRNA-mRNA network targets and pathway-associated proteins. Results In MCAO rats, THSWD regulated a total of 302 IncRNAs. Bioinformatics analysis suggested that some core IncRNAs might play an important role in the treatment of MCAO rats with THSWD, and we further found that THSWD might also treat MCAO rats through multiple pathways such as IncRNA-mRNA network and network-enriched complement and coagulation cascades. The results of molecular docking showed that the active compounds gallic acid and a-mygdalin of THSWD had a certain binding ability to protein targets. Conclusions THSWD can protect the brain injury of MCAO rats through IncRNA, which may provide new insights for the treatment of ischemic stroke with THSWD.
6.Change characteristics of heart rate variability in chronic heart failure combined Parkinson's disease
Chinese Journal of cardiovascular Rehabilitation Medicine 2024;33(1):107-110
Heart rate variability(HRV)is a non-invasive index used to assess autonomic nervous function in heart,which has been widely used in evaluation of hypertension,coronary heart disease,diabetes and other diseases.Chro-nic heart failure(CHF)induces ventricular remodeling by slowly activating neuroendocrinal system,and HRV grad-ually decreases with the decline of human cardiac function.The present article makes a review on correlation be-tween CHF and Parkinson's disease(PD)and its possible mechanism,as well as the change characteristics of HRV in CHF complicated PD,aiming at providing direction for follow-up development of targeted treatment and preven-tion strategies for PD patients,and it is conducive to improve quality of life of PD patients.
7.The Functional Role of SUMOylation in The Tumor Microenvironment
Pan-Pan ZHAO ; Jun-Xu YU ; Ya-Ning CHE ; Hui-Yi LIANG ; Chao HUANG
Progress in Biochemistry and Biophysics 2024;51(6):1256-1268
Tumors continue to be a major challenge in human survival that we have yet to overcome. Despite the variety of treatment options available, we have not yet found an effective method. As more and more research is conducted, attention has been turned to a new field for tumor treatment—the tumor microenvironment (TME). This is a dynamic and complex environment consisting of various matrix cells surrounding cancer cells, including surrounding immune cells, blood vessels, extracellular matrix, fibroblasts, bone marrow-derived inflammatory cells, signaling molecules, and some specific cell types. Firstly, endothelial cells play a key role in tumor development and the immune system’s protection of tumor cells. Secondly, immune cells, such as macrophages, Treg cells, Th17 cells, are widely involved in various immune responses and activities in the human body, such as inflammation responses promoting survival carefully orchestrated by the tumor. Even though many studies have extensively researched the TME and found many research schemes, so far, no key effective method has been found to treat tumors by affecting the TME. The TME is a key interaction area between the host immune system and the tumor. Cells within the TME influence each other and interact with cancer cells to affect cancer cell invasion, tumor growth, and metastasis. This is a new direction for cancer treatment. In the complex environment of the TME, post-translational modifications (PTMs) of proteins have been proven to play an important role in the TME. PTMs are dynamic, strictly regulated changes to proteins that control their function by regulating their structure, spatial location, and interaction. Among PTMs, a reversible post-translational modification called SUMOylation is a common regulatory mechanism in cellular processes. It is a post-translational modification that targets lysine residues with a small ubiquitin-like modifier (SUMO) in a reversible post-translational modification manner. SUMOylation is widely involved in carcinogenesis, DNA damage response, cancer cell proliferation, metastasis, and apoptosis, playing a pivotal role in the TME, such as DNA damage repair, tumor metastasis, and also participates in immune cell differentiation, activation, and inhibition of immune cells. On the other hand, SUMO or sentrin-specific protease (SENP) inhibitors can interfere with the SUMOylation process, thereby affecting many biological processes, including immune response, carcinogenesis, cell cycle progression, and cell apoptosis, etc. In summary, this review aims to introduce the dynamic modification of protein SUMOylation on various immune cells and the application of various inhibitors, thereby exploring its role in the TME. This is a challenging but hopeful field, and we look forward to future research that can bring more breakthroughs. In conclusion, the TME is a complex and dynamic environment that plays a crucial role in the development and progression of tumors. Understanding the intricate interactions within the TME and the role of PTMs, particularly SUMOylation, could provide valuable insights into the mechanisms of tumor development and potentially lead to the development of novel therapeutic strategies. The study of SUMOylation and its effects on various immune cells in the TME is an exciting and promising area of research that could significantly advance our understanding of tumor biology and potentially lead to the development of more effective treatments for cancer. This is a challenging but hopeful field, and we look forward to future research that can bring more breakthroughs.
8.Experimental study on anti-fatigue effect of Polysaccharides of Panax notoginseng
Pan-Pan WEI ; Zi-Jun YAN ; Meng-Yue DENG ; Die XIA ; Yu-Zhen DING ; Lei ZHANG ; Tong CHEN
The Chinese Journal of Clinical Pharmacology 2024;40(1):87-91
Objective To explore the effect of Polysaccharides of Panax notoginseng(PPN)on anti-exercise fatigue in mice.Methods One hundred male KM mice were randomly divided into negative control group,positive control group and experimental-L,-M,-H groups,with 20 cases per group.Experimental-L,-M,-H groups was given 100,200,400 mg·kg-1 PPN,respectively;positive control group was given 200 mg·kg-1 vitamin C;negative control group was given 0.1 mL·10 g-1 0.9%NaCl.Five groups were gavaged once a day for 28 days.After the last administration,the loaded swimming time was measured;after 90 minutes of the unloaded swimming test,the mice were allowed to rest for 30 minutes,the levels of lactic acid(LD),blood urea nitrogen(BUN),glycogen,and malondialdehyde(MDA)were measured,the safety of PPN with organ indices and histopathology.Results LD levels in negative control group,positive control group and experimental-L,-M,-Hgroupswere(4.76±0.84),(2.86±0.34),(3.00±0.69),(2.35±0.65)and(1.39±0.48)mg·kg-1;BUN contents were(13.65±1.25),(12.55±0.91),(12.12±1.24),(11.06±1.30)and(9.85±1.05)mmol·L-1;liver glycogen contents were(3.24±0.56),(11.11±2.16),(5.61±1.41),(6.60±1.49)and(12.05±2.25)mg·g-1;MDA levels were(2.36±0.21),(1.23±0.41),(1.93±0.23),(1.73±0.21)and(1.04±0.18)mg prot·mL-1.Compared with negative control group,the differences of above indexes in the positive control group and experimental-L,-M,-H groups were statistically significant(P<0.05,P<0.01,P<0.001).Conclusion PPN can increase exercise endurance in mice and has an anti-fatigue effect.This study provides a theoretical basis for the application of PPN in the field of anti-fatigue research.
9.Antioxidant activity and organ protection of Panax notoginseng polysaccharide on oxidative damage and aging model mice
Meng-Yue DENG ; Pan-Pan WEI ; Ming LI ; Zi-Jun YAN ; Die XIA ; Yu-Zhen DING ; Lei ZHANG ; Tong CHEN
The Chinese Journal of Clinical Pharmacology 2024;40(6):889-893
Objective To study the antioxidant activity and organ protection of different components of Panax notoginseng polysaccharide(PNPS)in D-galactose-induced oxidative damage aging model mice.Methods KM mice were randomly divided into normal group,model group,vitamin C(VC)group(given 200 mg·kg-1 VC),crude polysaccharide from Panax notoginseng(CPPN)group,neutral polysaccharide from Panax notoginseng(NPPN)group and acidic polysaccharide from Panax notoginseng(APPN-Ⅰ,APPN-Ⅱ,APPN-Ⅲ)group(given 400 mg·kg-1 CPPN,NPPN,APPN-Ⅰ,APPN-Ⅱ,APPN-Ⅲ,respectively).Except for the normal group,oxidative injury aging mouse models were established by intraperitoneal injection of 1 g·kg-1 D-galactose.The mice were sacrificed after continuous administration for 42 days,and serum and liver homogenate were prepared.Malondialdehyde(MDA)was determined by thiobarbituric acid method;superoxide dismutase(SOD)was determined by tetrazole salt method;glutathione peroxidase(GSH-Px)was determined by double antibody sandwich method.Results Serum SOD in the normal group,model group,VC group,CPPN group,NPPN group and APPN-Ⅰ,APPN-Ⅱ,APPN-Ⅲ groups were(15.07±0.69),(12.79±1.51),(15.56±1.01),(13.69±0.96),(14.27±0.64),(14.31±0.99),(14.18±0.79)and(15.85±0.89)U·mL-1;serum GSH-Px were(105.35±4.97),(90.36±4.31),(111.51±7.00),(113.03±8.06),(118.77±5.19),(123.60±8.08),(131.65±3.60)and(149.22±13.32)ng·L-1;serum MDA were(1.72±0.26),(4.16±0.92),(2.26±0.59),(2.82±0.47),(2.46±0.50),(1.98±0.41),(2.39±0.39)and(2.07±0.24)nmol·mL-1;the liver SOD were(234.22±3.84),(205.04±7.28),(234.63±6.37),(214.99±17.66),(234.13±3.63),(234.63±3.44),(233.87±5.63)and(235.42±2.33)U·mgprot-1;liver GSH-Px were(274.27±23.72),(207.00±15.22),(257.68±16.39),(249.79±18.78),(252.62±10.92),(256.25±21.83),(261.20±17.52)and(263.16±17.98)ng·L-1;liver MDA were(35.70±3.52),(49.65±6.32),(36.15±2.48),(39.17±4.29),(37.40±6.19),(35.34±4.06)and(35.90±5.36),(33.31±7.64)nmol·mgprot-1.Compared with the normal group,SOD,GSH-Px in serum and liver of mice in the model group were significantly reduced,and the content of MDA was significantly increased(all P<0.01).After treatment with different components of Panax notoginseng polysaccharide,the oxidative indicators in mice were significantly improved,among which APPN-Ⅲ have the best antioxidant activity,which could significantly increase the activities of SOD,GSH-Px in serum and liver,and reduce the content of MDA(all P<0.01).Conclusion Different components of Panax notoginseng polysaccharide have antioxidant activity and organ protection in vivo,among which APPN-Ⅲ has the best antioxidant activity and has a good organ protection effect.
10.Progress and practice of objective measurement of physical behaviors in large-scale cohort research
Yuanyuan CHEN ; Yalei KE ; Jun LYU ; Dianjianyi SUN ; Lang PAN ; Pei PEI ; Huaidong DU ; Junshi CHEN ; Zhengming CHEN ; Liming LI ; Doherty AIDEN ; Canqing YU
Chinese Journal of Epidemiology 2024;45(1):35-40
Due to the limited reliability of traditional self-completed questionnaire, the accuracy of measurement of physical behaviors (physical activity, sedentary behavior and sleep) is not high. With the development of technology, wearable devices (e.g. accelerometer) can be used for more accurate measurement of physical behaviors and have great application potential in large-scale research. However, the data of objective measurement of physical behaviors from large-scale cohort research in Asian populations is still limited. Between August 2020 and December 2021, the 3 rd resurvey of China Kadoorie Biobank (CKB) project used Axivity AX3 wrist triaxial accelerometer to collect the data of participants' daily activity and sleep status. A total of 20 370 participants from 10 study areas were included in the study, in whom 65.2% were women, and the age was (65.4±9.1) years. The participants' physical activity level varied greatly in different study areas. The objective measurement of participants' physical behaviors in CKB project has provided valuable resources for the description of 24-hour patterns of physical behaviors and evaluation of the health effect of physical activity, sedentary behavior and sleep as well as their association with diseases in the elderly in China.

Result Analysis
Print
Save
E-mail