1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Exploring the inhibitory effect and mechanism of isorhamnetin therapy on oral squamous cell carcinoma based on network pharmacology and molecular docking
YU Fangfang ; ZHOU Jingjing ; YANG Jie ; QU Huijuan ; HUI Guangyan
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(1):14-23
Objective :
To explore the mechanism of isorhamnetin (Iso) in the treatment of oral squamous cell carcinoma (OSCC) using network pharmacology and molecular docking methods and to verify it in vitro.
Methods :
The key targets were obtained by constructing the PPI protein interaction network based on the common intersection targets of Iso-OSCC. At the same time, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) were used to analyze the related signaling pathways of the intersection targets. Iso and core targets were also analyzed through molecular docking and visualization. Colony formation assay and Transwell assay were used to identify the effect of Iso on the proliferation and invasion of Cal-27 cells. Western blot was used to analyze the regulatory effects of different concentrations of Iso on estrogen receptor-1 (ESR1), phosphoinositide-3-kinase regulatory subunit-1 (PIK3R1), Src tyrosine kinase (SRC), and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway proteins.
Results:
A total of 269 potential intersection targets of Iso-regulated OSCC were obtained. According to the degree obtained by topological analysis, PIK3R1, AKT1, SRC, ESR1, and other core targets were screened out. KEGG analysis showed that 165 signaling pathways were enriched in the intersection targets of Iso-OSCC, among which the PI3K/AKT signaling pathway played an important role in the treatment of OSCC with Iso. Molecular docking results showed that the absolute value of binding energy between target proteins PIK3R1, AKT1, SRC, ESR1, and Iso was high. After Cal-27 cells were treated with Iso, the number of cell colony formations, the number of transmembrane cells, and the expression of PIK3R1, ESR1, SRC, p-PI3K, and p-AKT were negatively correlated with the increase in Iso concentration (P < 0.05).
Conclusion
Iso can inhibit PI3K/AKT signal transduction and influence the expression of PIK3R1, AKT1, SRC, and ESR1 proteins, thereby inhibiting the occurrence and development of OSCC.
3.4 Weeks of HIIT Modulates Metabolic Homeostasis of Hippocampal Pyruvate-lactate Axis in CUMS Rats Improving Their Depression-like Behavior
Yu-Mei HAN ; Chun-Hui BAO ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Huan XIANG ; Jun-Sheng TIAN ; Shi ZHOU ; Shuang-Shuang WU
Progress in Biochemistry and Biophysics 2025;52(6):1468-1483
ObjectiveTo investigate the role of 4-week high-intensity interval training (HIIT) in modulating the metabolic homeostasis of the pyruvate-lactate axis in the hippocampus of rats with chronic unpredictable mild stress (CUMS) to improve their depressive-like behavior. MethodsForty-eight SPF-grade 8-week-old male SD rats were randomly divided into 4 groups: the normal quiet group (C), the CUMS quiet group (M), the normal exercise group (HC), and the CUMS exercise group (HM). The M and HM groups received 8 weeks of CUMS modeling, while the HC and HM groups were exposed to 4 weeks of HIIT starting from the 5th week (3 min (85%-90%) Smax+1 min (50%-55%) Smax, 3-5 cycles, Smax is the maximum movement speed). A lactate analyzer was used to detect the blood lactate concentration in the quiet state of rats in the HC and HM groups at week 4 and in the 0, 2, 4, 8, 12, and 24 h after exercise, as well as in the quiet state of rats in each group at week 8. Behavioral indexes such as sucrose preference rate, number of times of uprightness and number of traversing frames in the absenteeism experiment, and other behavioral indexes were used to assess the depressive-like behavior of the rats at week 4 and week 8. The rats were anesthetized on the next day after the behavioral test in week 8, and hippocampal tissues were taken for assay. LC-MS non-targeted metabolomics, target quantification, ELISA and Western blot were used to detect the changes in metabolite content, lactate and pyruvate concentration, the content of key metabolic enzymes in the pyruvate-lactate axis, and the protein expression levels of monocarboxylate transporters (MCTs). Results4-week HIIT intervention significantly increased the sucrose preference rate, the number of uprights and the number of traversed frames in the absent field experiment in CUMS rats; non-targeted metabolomics assay found that 21 metabolites were significantly changed in group M compared to group C, and 14 and 11 differential metabolites were significantly dialed back in the HC and HM groups, respectively, after the 4-week HIIT intervention; the quantitative results of the targeting showed that, compared to group C, lactate concentration in the hippocampal tissues of M group, compared with group C, lactate concentration in hippocampal tissue was significantly reduced and pyruvate concentration was significantly increased, and 4-week HIIT intervention significantly increased the concentration of lactate and pyruvate in hippocampal tissue of HM group; the trend of changes in blood lactate concentration was consistent with the change in lactate concentration in hippocampal tissue; compared with group C, the LDHB content of group M was significantly increased, the content of PKM2 and PDH, as well as the protein expression level of MCT2 and MCT4 were significantly reduced. The 4-week HIIT intervention upregulated the PKM2 and PDH content as well as the protein expression levels of MCT2 and MCT4 in the HM group. ConclusionThe 4-week HIIT intervention upregulated blood lactate concentration and PKM2 and PDH metabolizing enzymes in hippocampal tissues of CUMS rats, and upregulated the expression of MCT2 and MCT4 transport carrier proteins to promote central lactate uptake and utilization, which regulated metabolic homeostasis of the pyruvate-lactate axis and improved depressive-like behaviors.
4.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
5.Risk factor analysis for postoperative pulmonary infections with multidrug-resistant bacteria in patients with oral squamous cell carcinoma undergoing flap repair surgery
WANG Qian ; PENG Hui ; ZHANG Liyu ; YANG Zongcheng ; WANG Yuqi ; PAN Yu ; ZHOU Yu
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(7):554-562
Objective:
To investigate the distribution patterns and risk factors for multidrug-resistant bacterial pulmonary infections in patients with oral squamous cell carcinoma (OSCC) undergoing flap reconstruction surgery, and to provide evidence for infection prevention and treatment in this population.
Methods:
This study was approved by the institutional medical ethics committee. We retrospectively analyzed sputum culture results, antimicrobial susceptibility testing data, and clinical records of 109 OSCC patients undergoing flap reconstruction. Chi-square tests were employed to identify pathogens and risk factors for multidrug-resistant bacteria (MDR) in postoperative pulmonary infections. Multivariate logistic regression analysis was conducted to determine MDR risk factors and establish a nomogram prediction model. The model’s discriminatory power, accuracy, and clinical utility were evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).
Results:
Among the 109 patients, 52 had negative sputum cultures and 57 tested positive, of whom 14 developed multidrug-resistant (MDR) pulmonary infections. Chi-square analysis revealed that blood transfusion, pre-existing pulmonary diseases, operation time ≥ 490 min, intraoperative blood loss ≥ 400 mL, and abnormal BMI were significant risk factors for postoperative MDR infections (P < 0.05). Multivariate logistic regression identified pre-existing pulmonary diseases, intraoperative blood loss ≥ 400 mL, abnormal BMI, and operative duration ≥ 490 min as independent risk factors for MDR infections (P < 0.05). The nomogram prediction model for MDR infections demonstrated an area under the ROC curve (AUC) of 0.874 (95% CI: 0.775-0.973). The calibration plot showed good agreement between predicted and observed outcomes. DCA indicated a net clinical benefit when the threshold probability for high-risk MDR infections ranged from 0.000 to 0.810. Common MDR pathogens included MDR Pseudomonas aeruginosa, MDR Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii (CRAB), and methicillin-resistant Staphylococcus aureus (MRSA).
Conclusion
Among OSCC patients undergoing flap reconstruction, MDR pulmonary infections were predominantly caused by gram-negative bacteria (including CRAB, MDR Pseudomonas aeruginosa, and MDR Klebsiella pneumoniae along with the gram-positive pathogen MRSA. Pre-existing pulmonary comorbidities, prolonged surgery duration (≥ 490 min), significant intraoperative blood loss (≥ 400 mL), and abnormal BMI were confirmed as independent risk factors for these MDR infections. The nomogram predictive model incorporating these four variables demonstrated clinically reliable accuracy in risk stratification for postoperative MDR pulmonary infections in this patient population.
6.Analysis of prognostic risk factors for chronic active antibody-mediated rejection after kidney transplantation
Yu HUI ; Hao JIANG ; Zheng ZHOU ; Linkun HU ; Liangliang WANG ; Hao PAN ; Xuedong WEI ; Yuhua HUANG ; Jianquan HOU
Organ Transplantation 2025;16(4):565-573
Objective To investigate the independent risk factors affecting the prognosis of chronic active antibody-mediated rejection (caAMR) after kidney transplantation. Methods A retrospective analysis was conducted on 61 patients who underwent renal biopsy and were diagnosed with caAMR. The patients were divided into caAMR group (n=41) and caAMR+TCMR group (n=20) based on the presence or absence of concurrent acute T cell-mediated rejection (TCMR). The patients were followed up for 3 years. The value of 24-hour urinary protein and estimated glomerular filtration rate (eGFR) at the time of biopsy in predicting graft loss was assessed using receiver operating characteristic (ROC) curves. The independent risk factors affecting caAMR prognosis were analyzed using the LASSO-Cox regression model. The correlation between grouping, outcomes, and Banff scores was compared using Spearman rank correlation matrix analysis. Kaplan-Meier analysis was used to evaluate the renal allograft survival rates of each subgroup. Results The 3-year renal allograft survival rates for the caAMR group and the caAMR+TCMR group were 83% and 79%, respectively. The area under the ROC curve (AUC) for predicting 3-year renal allograft loss was 0.83 [95% confidence interval (CI) 0.70-0.97] for eGFR and 0.78 (95% CI 0.61-0.96) for 24-hour urinary protein at the time of biopsy. LASSO-Cox regression analysis and Kaplan-Meier analysis showed that eGFR≤25.23 mL/(min·1.73 m²) and the presence of donor-specific antibody (DSA) against human leukocyte antigen (HLA) class I might be independent risk factors affecting renal allograft prognosis, with hazard ratios of 7.67 (95% CI 2.18-27.02) and 5.13 (95% CI 1.33-19.80), respectively. A strong correlation was found between the Banff chronic lesion indicators of renal interstitial fibrosis and tubular atrophy (P<0.05). Conclusions The presence of HLA class I DSA and eGFR≤25.23 mL/(min·1.73 m²) at the time of biopsy may be independent risk factors affecting the prognosis of caAMR.
7.Correlation between peripheral blood CD4 T lymphocyte subsets and delayed graft function and short-term prognosis after kidney transplantation
Senlin YANG ; Yu HUI ; Xinping BAO ; Bin ZHOU ; Xuedong WEI ; Jianquan HOU
Journal of Modern Urology 2025;30(6):470-475
Objective: To investigate the correlation between peripheral blood CD4
T lymphocyte subsets and delayed graft function (DGF) and short-term prognosis in kidney transplant recipients, so as to help optimize preoperative assessment for kidney transplantation and provide insights into the immune mechanisms of DGF. Methods: A retrospective analysis was conducted on the clinical data of 103 kidney transplant recipients at the First Affiliated Hospital of Soochow University during Jun.2022 and Oct.2023. A total of 61 recipients were finally included in this study, and were categorized into two groups based on postoperative renal function recovery:the DGF group (n=20) and the immediate graft function (IGF) group (n=41).Flow cytometry was used to detect the proportions and absolute counts of various CD4
T lymphocyte subsets in the peripheral blood on postoperative day 7.The clinical data and peripheral blood lymphocyte subsets between the two groups were compared.For the subsets that exhibited significant differences, the correlation between their proportions and absolute counts and serum creatinine (Scr) levels on postoperative day 7 was further analyzed in the DGF group.Receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC) was calculated to evaluate the predictive performance of the most strongly correlated CD4
T lymphocyte subset in terms of proportion and absolute count for short-term renal function. Results: There were no statistically significant differences in the proportions and absolute counts of Th1, Th2, Th17, and regulatory T cells (Treg) between the DGF and IGF groups (P>0.05).The proportions and absolute counts of follicular helper T cells (Tfh) and PD-1
Tfh cells were significantly higher in the DGF group than in the IGF group (P<0.000 1). The Scr levels at 1 month and 1 year postoperatively were significantly higher in the DGF group than in the IGF group (P<0.01), while the estimated glomerular filtration rate (eGFR) was significantly lower in the DGF group compared with the IGF group (P<0.01, P=0.02).Spearman correlation analysis showed that the proportions and absolute counts of Tfh and PD-1
Tfh cell subsets were positively correlated with the Scr level on post-operative day 7 in the DGF group (P<0.05).The ROC curve demonstrated that the AUC for the proportion of PD-1
Tfh cells in predicting Scr and eGFR at 1 month after surgery was 0.73(95%CI:0.61-0.86) and 0.75 (95%CI:0.62-0.88), respectively.Additionally, the AUC for predicting Scr and eGFR at 1 year was 0.72(95%CI:0.59-0.86) and 0.70(95%CI:0.58-0.83), respectively. Conclusion: The increase in the proportions and absolute counts of Tfh and PD-1
Tfh cells is associated with postoperative DGF of renal transplant recipients, and the proportion of PD-1
Tfh cells may help predict the short-term renal function of recipients.
8.Impact of inhaled corticosteroid use on elderly chronic pulmonary disease patients with community acquired pneumonia.
Xiudi HAN ; Hong WANG ; Liang CHEN ; Yimin WANG ; Hui LI ; Fei ZHOU ; Xiqian XING ; Chunxiao ZHANG ; Lijun SUO ; Jinxiang WANG ; Guohua YU ; Guangqiang WANG ; Xuexin YAO ; Hongxia YU ; Lei WANG ; Meng LIU ; Chunxue XUE ; Bo LIU ; Xiaoli ZHU ; Yanli LI ; Ying XIAO ; Xiaojing CUI ; Lijuan LI ; Xuedong LIU ; Bin CAO
Chinese Medical Journal 2024;137(2):241-243
9. Mechanism and experimental validation of Zukamu granules in treatment of bronchial asthma based on network pharmacology and molecular docking
Yan-Min HOU ; Li-Juan ZHANG ; Yu-Yao LI ; Wen-Xin ZHOU ; Hang-Yu WANG ; Jin-Hui WANG ; Ke ZHANG ; Mei XU ; Dong LIU ; Jin-Hui WANG
Chinese Pharmacological Bulletin 2024;40(2):363-371
Aim To anticipate the mechanism of zuka- mu granules (ZKMG) in the treatment of bronchial asthma, and to confirm the projected outcomes through in vivo tests via using network pharmacology and molecular docking technology. Methods The database was examined for ZKMG targets, active substances, and prospective targets for bronchial asthma. The protein protein interaction network diagram (PPI) and the medication component target network were created using ZKMG and the intersection targets of bronchial asthma. The Kyoto Encyclopedia of Genes and Genomics (KEGG) and gene ontology (GO) were used for enrichment analysis, and network pharmacology findings were used for molecular docking, ovalbumin (OVA) intraperitoneal injection was used to create a bronchial asthma model, and in vivo tests were used to confirm how ZKMG affected bronchial asthma. Results There were 176 key targets for ZKMG's treatment of bronchial asthma, most of which involved biological processes like signal transduction, negative regulation of apoptotic processes, and angiogenesis. ZKMG contained 194 potentially active components, including quercetin, kaempferol, luteolin, and other important components. Via signaling pathways such TNF, vascular endothelial growth factor A (VEGFA), cancer pathway, and MAPK, they had therapeutic effects on bronchial asthma. Conclusion Key components had strong binding activity with appropriate targets, according to molecular docking data. In vivo tests showed that ZKMG could reduce p-p38, p-ERKl/2, and p-I
10. The neuroprotective effects of Herba siegesbeckiae extract on cerebral ischemia/reperfusion in rats
Hui-Ling WU ; Qing-Qing WU ; Jing-Quan CHEN ; Bin-Bin ZHOU ; Zheng-Shuang YU ; Ze-Lin YANG ; Wen-Fang LAI ; Gui-Zhu HONG
Chinese Pharmacological Bulletin 2024;40(1):70-75
Aim To study the neuroprotective effects of Herba siegesbeckiae extract on cerebral ischemia/ reperfusion rats and its mechanism. Methods Sixty SD rats were randomly divided into model group, low, middle and high dose groups of Herba siegesbeckiae, and Sham operation group, and the drug was given continuously for seven days. The degree of neurologic impairment was evaluated by mNSS, and the infarct volume was measured by MRI. The number of Nissl-posi- tive cells was detected by Nissl staining, and the apop- tosis was accessed by Tunel staining. Furthermore, the expression of Bax, Bcl-2 and NeuN was observed by Western blot, and the expression of NeuN was detected by immunofluorescence staining. The expression of IL- 1β, TNF-α and IL-6 mRNA was performed by RT- qPCR. Results The mNSS score and the volume of ischemic cerebral infarction in the model group were significantly increased, and Herba siegesbeckiae extract treatment significantly decreased the mNSS score and infarct volume (P<0.05, P<0.01). Herba siegesbeckiae extract could increase the number of Nissl-pos- itive cells and the expression of NeuN (P<0.01), and reduce the number of Tunel-positive cells (P<0.01). Western blot showed that Herba siegesbeckiae extract inhibited the expression of Bax, increased Bcl-2 and NeuN in ischemic brain tissue (P<0.01). RT-qPCR showed that Herba siegesbeckiae extract inhibited the expression of IL-1 β, TNF-α and IL-6 mRNA in the is-chemic brain tissue (P<0.01). Conclusions Herba siegesbeckiae extract can reduce the cerebral infarction volume, improve the neurological function damage, inhibit the apoptosis of nerve cells and the expression of inflammatory factors and promote the expression of NeuN, there by exerting protective effects on MCAO rats.


Result Analysis
Print
Save
E-mail