1.Network pharmacology-based mechanism of combined leech and bear bile on hepatobiliary diseases
Chen GAO ; Yu-shi GUO ; Xin-yi GUO ; Ling-zhi ZHANG ; Guo-hua YANG ; Yu-sheng YANG ; Tao MA ; Hua SUN
Acta Pharmaceutica Sinica 2025;60(1):105-116
In order to explore the possible role and molecular mechanism of the combined action of leech and bear bile in liver and gallbladder diseases, this study first used network pharmacology methods to screen the components and targets of leech and bear bile, as well as the related target genes of liver and gallbladder diseases. The selected key genes were subjected to interaction network and GO/KEGG enrichment analysis. Then, using sodium oleate induced HepG2 cell lipid deposition model and
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.Threshold of kurtosis on occupational hearing loss associated with non-steady noise
Yang LI ; Haiying LIU ; Linjie WU ; Jinzhe LI ; Jiarui XIN ; Hua ZOU ; Xin SUN ; Wei QIU ; Changyan YU ; Meibian ZHANG
Journal of Environmental and Occupational Medicine 2025;42(7):779-785
Background Kurtosis reflecting noise's temporal structure is an effective metric for evaluating noise-induced hearing loss (NIHL), and its threshold is still unclear. Objective To explore the energy range of kurtosis and the threshold of NIHL induced by kurtosis in this energy rangeMethods Using cross-sectional design,
4.Radiation environment monitoring and evaluation at application sites of online elemental analyzers in cement enterprises
Lun CUI ; Wenbin PENG ; Ying ZHANG ; Hua YANG ; Huijun YU ; Qing CHANG ; Mingfa XU
Chinese Journal of Radiological Health 2025;34(3):408-413
Objective To systematically evaluate the radiation impact of radioactive sources used in online elemental analyzers in cement enterprises on the surrounding environment, and to provide a scientific basis for radiation monitoring and safety management at the application sites of this type of radioactive sources. Methods A statistical analysis was conducted on 15 cement enterprises in Guangxi Province using online elemental analyzers with 252Cf as the radioactive source. On-site investigation of radiation safety management and on-site monitoring of radiation environment were performed, followed by an evaluation based on the collected data. Results Although the gamma radiation ambient dose equivalent rate and neutron ambient dose equivalent rate increased around the sites using online elemental analyzers with 252Cf as the radioactive source, they all met the requirements of the Radiological Health Protection Requirements for Instruments with Sealed Sources (GBZ 125—2009). Conclusion Under the current usage and management conditions, the application of this type of radioactive sources has controllable radiation impact on the surrounding environment, and will not pose a threat to public health and environmental safety. However, continuous strengthening of radiation safety management measures and regular radiation monitoring work are still needed to ensure the safe use of radioactive sources, further reducing potential radiation risks and providing strong guarantees for the safe application of radioactive sources in online elemental analyzers in cement enterprises.
5.Medication Rules of Professor Hua Baojin in Treatment of Subsolid Pulmonary Nodules Based on Data Mining
Huibo YU ; Yue LI ; Yue LUO ; Hongyuan LIU ; Xiyuan ZHANG ; Jiaqi HU ; Rui LIU ; Baojin HUA
Cancer Research on Prevention and Treatment 2025;52(8):682-691
Objective To explore the medication rules of Professor Hua Baojin in the treatment of subsolid pulmonary nodules through retrospective analysis and data mining techniques. Methods The prescriptions of patients with subsolid pulmonary nodules who were diagnosed and treated by Professor Hua Baojin at Guang’anmen Hospital of the Chinese Academy of Chinese Medical Sciences from January 1, 2021 to December 31, 2024 were retrospectively collected. Data were imported into the Ancient and Modern Medical Case Cloud Platform for analysis of drug frequency, four natures and five flavors, meridian tropism, drug association, and hierarchical clustering. Results A total of 455 prescriptions were included, containing 205 kinds of traditional Chinese medicines, with a total frequency of
6.Comparison of 3 evaluation criteria for potentially inappropriate medications in elderly patients with femoral neck fracture
Xuan ZHANG ; Yu SUN ; Yang GAO ; Yirou JIANG ; Hua ZHU ; Wei GONG
China Pharmacy 2024;35(6):762-766
OBJECTIVE To analyze the prevalence of potentially inappropriate medication (PIM) in elderly patients with femoral neck fractures at admission and compare the concordance of 3 evaluation criteria. METHODS A retrospective study was conducted to review the data of elderly patients with femoral neck fractures admitted to the Department of Orthopedics in Northern Jiangsu People’s Hospital from July 2022 to June 2023. The PIMs were identified according to the Criteria of Potentially Inappropriate Medications for Older Adults in China:2017 edition (hereinafter referred to as Chinese criteria), American Geriatrics Society 2023 Updated AGS Beers Criteria® for Potentially Inappropriate Medication in Older Adults (hereinafter referred to as 2023 Beers criteria), third version criteria for screening tool of older people’s prescriptions for potentially inappropriate medication (hereinafter referred to as STOPP criteria version 3). The concordance of the 3 evaluation criteria was compared by using Kappa statistics. RESULTS A total of 246 patients were included in this study; 49 patients (19.92%) with 77 PIMs were detected by the Chinese criteria, 64 patients (26.02%) with 118 PIMs were detected by the 2023 Beers criteria, and 41 patients (16.67%) with 67 PIMs were detected by the STOPP criteria version 3; 22 patients met all three criteria simultaneously. The concordance among the three criteria showed moderate agreement (0.417≤Kappa≤0.486) when compared in pairs. CONCLUSIONS There are certain differences in the PIM evaluated by the three criteria, but the prevalence of PIMs is below 30% according to the different H202134) criteria. Benzodiazepines, antipsychotics, antidepressants, and other drugs may increase the risk of patients falling again.
7.Application of magnetic resonance imaging-proton density fat fraction in liver fat quantification
Chen YANG ; Shanghai YU ; Feipeng XU ; Hua ZHANG
Journal of Clinical Hepatology 2024;40(3):600-605
Hepatic steatosis can be observed in chronic liver diseases of different etiologies. The main predisposing factors for hepatic steatosis include chronic viral hepatitis, cholestatic liver disease, alcoholic liver disease, and nonalcoholic fatty liver disease. Simple fatty liver disease is the initial manifestation of hepatic steatosis, followed by steatohepatitis, liver fibrosis, liver cirrhosis, and even hepatocellular carcinoma. With the development of medical imaging technology, magnetic resonance imaging-proton density fat fraction (MRI-PDFF) has been widely used in the diagnosis of fatty liver disease (FLD) in clinical practice. MRI-PDFF is gradually becoming the gold standard for the noninvasive diagnosis of FLD due to its high accuracy and good repeatability. This article reviews the clinical application of MRI-PDFF in liver fat quantification and related research advances.
8.Research progress of IDO1-mediated tryptophan metabolism in sepsis
Xiao-di ZHAO ; Cheng-yan MA ; Hua-qing CUI ; Yu-chen WANG ; Xiao-guang CHEN ; Sen ZHANG
Acta Pharmaceutica Sinica 2024;59(2):289-297
Sepsis is a condition characterized by organ dysfunction resulting from the systemic inflammatory response triggered by an infection. Excessive inflammation and immunosuppression are intertwined, and severe cases may even develop into multiple organ failure. Studies have shown that indoleamine 2,3-dioxygenase 1-mediated tryptophan metabolism is involved in the occurrence and development of sepsis, and elevated plasma kynurenine levels and Kyn/Trp ratios are early indicators of sepsis development. In this paper, we provide a comprehensive summary of the role of IDO1 in the acute inflammatory phase of sepsis, late immunosuppression, and organ damage. This includes its regulation of inflammatory state, immune cell function, blood pressure, and other aspects. Additionally, we analyze preclinical studies on targeted IDO1 drugs. An in-depth understanding and study of IDO may help to understand the pathogenesis and clinical significance of sepsis and multiple organ damage from a new perspective and provide new research ideas for exploring its prevention and treatment methods.
9.Myricetin attenuates renal fibrosis by activating Nrf2/HO-1 pathway to inhibit oxidative stress
Dong-xue LI ; Zhou HUANG ; Han-yu WANG ; Zhi-hao ZHANG ; Ning-hua TAN ; Xue-yang DENG
Acta Pharmaceutica Sinica 2024;59(2):359-367
This paper investigates the effect of myricetin (MYR) on renal fibrosis induced by unilateral ureteral obstruction (UUO) and common bile duct ligation (CBDL) in mice and its mechanism. The animal experiment has been approved by the Ethics Committee of China Pharmaceutical University (NO: 2022-10-020). Thirty-five ICR mice were divided into control, UUO, UUO+MYR, CBDL and CBDL+MYR groups. H&E and Masson staining were used to detect pathological changes in kidney tissues. Western blot (WB) was used to detect the expression of fibrosis-related proteins in renal tissue, and total superoxide dismutase (SOD) activity detection kit (WST-8) was used to detect the changes of total SOD in renal tissue of CBDL mice.
10.Analysis of micronucleus rate in 394 radiation workers with cytokinesis-block micronucleus method
Haixiang LIU ; Hua ZHAO ; Yu GAO ; Jie ZHANG ; Xueqing ZHANG ; Ying XIA
Chinese Journal of Radiological Health 2024;33(2):129-134
Objective To analyze the micronucleus rate of radiation workers and to provide accurate occupational health monitoring basis in radiation workers exposed to low-level ionizing radiation for a long time. Methods The radiation group consisted of 353 radiation workers who had been exposed to ionizing radiation during work, while the control group consisted of 41 radiation workers who had not yet been exposed to ionizing radiation before work. The cytokinesis-block micronucleus method was used to determine the micronucleus rate. Results The average micronucleus rate in the radiation group was significantly higher than that in the control group (t = −2.95, P < 0.05). In the radiation group, the micronucleus rate gradually increased with age, and the difference was statistically significant (F = 8.36, P < 0.05). The micronucleus rates of workers with > 10 and > 30 years of service were significantly higher than those of workers with < 10 years of service (χ2 = −44.79, −60.47, P < 0.05). The micronucleus rate in females was significantly higher than that in males (t = 3.93, P < 0.05). The micronucleus rates in the diagnostic radiology group and the industrial detection group were significantly higher than that in the control group (t = 3.51, 3.65, P < 0.05). Conclusion The micronucleus rate has increased among the radiation workers exposed to low-level ionizing radiation for a long time. It is necessary to further strengthen occupational health monitoring and radiation protection education for radiation workers, especially the medical workers that constitute the largest population of radiation exposure workers.

Result Analysis
Print
Save
E-mail