1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
		                        		
		                        			
		                        			Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects. 
		                        		
		                        		
		                        		
		                        	
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
		                        		
		                        			 Background:
		                        			s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated. 
		                        		
		                        			Methods:
		                        			In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs. 
		                        		
		                        			Results:
		                        			Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment. 
		                        		
		                        			Conclusions
		                        			We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression. 
		                        		
		                        		
		                        		
		                        	
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
		                        		
		                        			 Background:
		                        			s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated. 
		                        		
		                        			Methods:
		                        			In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs. 
		                        		
		                        			Results:
		                        			Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment. 
		                        		
		                        			Conclusions
		                        			We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression. 
		                        		
		                        		
		                        		
		                        	
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
		                        		
		                        			 Background:
		                        			s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated. 
		                        		
		                        			Methods:
		                        			In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs. 
		                        		
		                        			Results:
		                        			Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment. 
		                        		
		                        			Conclusions
		                        			We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression. 
		                        		
		                        		
		                        		
		                        	
5.In Situ Labeling of Erythrocyte Membrane Anion Channel Proteins with Gold Nanoparticles Observed by Cryo-Scanning Electron Microscopy
Si-Hang CHENG ; Hui-Li WANG ; Yang YU ; Jin-Rui ZHANG ; Hong-Da WANG
Chinese Journal of Analytical Chemistry 2024;52(1):54-61
		                        		
		                        			
		                        			Band 3 protein is an important channel protein in the erythrocyte membrane which mediates the anion transport process inside and outside the cell membrane,as well as contributes to the maintenance of erythrocyte morphology,and has important physiological functions.However,the distribution state of this protein in the primary cell membrane is not known.Cryo-scanning electron microscopy enables imaging of the surface morphology of biological samples in a near-physiological state.In order to investigate the distribution of band 3 protein on erythrocyte membranes under physiological conditions,the present study utilized 5-nm gold nanoparticles modified with the antibodies to specifically bind to the band 3 protein on human blood erythrocyte membranes and imaged them by cryo-scanning electron microscopy,to obtain distribution of band 3 protein on human blood erythrocyte membranes.The results showed that the membrane proteins on the erythrocyte membranes tended to be clustered and distributed to form ″protein islands″,and band 3 proteins were mainly distributed in these protein islands,which were tightly connected with each other to form several functional microregions to play their respective roles.
		                        		
		                        		
		                        		
		                        	
6.Circular RNAs Involved in The Development of Nasopharyngeal Carcinoma
Si-Cheng ZUO ; Dan WANG ; Yong-Zhen MO ; Yu-Hang LIU ; Jiao-Di CAI ; Can GUO ; Fang XIONG ; Guo-Qun CHEN
Progress in Biochemistry and Biophysics 2024;51(4):809-821
		                        		
		                        			
		                        			Circular RNAs (circRNAs) are a kind of non-coding RNA (ncRNA) with covalent closed-loop structure. They have attracted more and more attention because of their high stability, evolutionary conservatism, and tissue expression specificity. It has shown that circRNAs are involved in the development of a variety of diseases including malignant tumors recently. Nasopharyngeal carcinoma (NPC) is a malignant tumor that occurs in the nasopharynx and has a unique ethnic and geographical distribution in South China and Southeast Asia. Epstein-Barr virus (EBV) infection is closely related to the development of NPC. Radiotherapy and chemotherapy are the mainstays of treatment for NPC. But tumor recurrence or distant metastasis is the leading cause of death in patients with NPC. Several studies have shown that circRNAs, as gene expression regulators, play an important role in NPC and affect the progression of NPC. This review mainly summarized the research status of abnormally expressed circRNAs in NPC and EBV-encoded circRNAs. We also discussed the possibility of circRNAs as a therapeutic target, diagnostic and prognostic marker for NPC. 
		                        		
		                        		
		                        		
		                        	
7.Design,numerical simulation and experimental study of novel oxygenator
Ming-Hao YUE ; Shi-Yao ZHANG ; Ji-Nian LI ; Hui-Chao LIU ; Zi-Hua SU ; Ya-Wei WANG ; Zeng-Sheng CHEN ; Shi-Hang LIN ; Jin-Yu LI ; Ya-Ke CHENG ; Yong-Fei HU ; Cun-Ding JIA ; Ming-Zhou XU
Chinese Medical Equipment Journal 2024;45(3):23-28
		                        		
		                        			
		                        			Objective To design a novel oxygenator to solve the existing problems of extracorporeal membrane oxygenation(ECMO)machine in high transmembrane pressure difference,low efficiency of blood oxygen exchange and susceptibility to thrombosis.Methods The main body of the oxygenator vascular access flow field was gifted with a flat cylindrical shape.The topology of the vascular access was modeled in three dimensions,and the whole flow field was cut into a blood inlet section,an inlet buffer,a heat exchange zone,a blood oxygen exchange zone,an outlet buffer and a blood outlet section.The oxygenator was compared with Quadrox oxygenator by means of ANSYS FLUENT-based simulation and prototype experiments.Results Simulation calculations showed the oxygenator designed was comparable to the clinically used ones in general,and gained advantages in transmembrane pressure difference,blood oxygen exchange and flow uniformity.Experimental results indicated that the oxygenator behaved better than Quadrox oxygenator in transmembrane pressure difference and blood oxygen exchange.Conclusion The oxygenator has advantages in transmem-brane pressure difference,temperature change,blood oxygen ex-change and low probability of thrombosis.[Chinese Medical Equipment Journal,2024,45(3):23-28]
		                        		
		                        		
		                        		
		                        	
8.Diagnostic performance of PI-RADS v2.1 for clinically significant prostate cancer in the peripheral,transitional and multiple zones
Xiao-Jun DENG ; Hao-Cheng ZHANG ; Jiong ZHANG ; Yu-Hang QIAN ; Mei-Mei TAO ; Chun-Mei LIAO ; Miao-Wen LIN ; Gen-Qiang LANG
National Journal of Andrology 2024;30(11):982-986
		                        		
		                        			
		                        			Objective:To evaluate the diagnostic performance of the Prostate Imaging Reporting and Data System version 2.1(PI-RADS v2.1)for clinically significant prostate cancer(CSPCa)in the peripheral zone(PZ),transitional zone(TZ)and multiple zones(MZs).Methods:We retrospectively studied the clinical data on 108 patients undergoing multiparametric magnetic resonance imaging(mpMRI)and transperineal prostate biopsy in our hospital from January 2021 to January 2023.Using PI-RADS v2.1,we ex-amined the MR images of the patients with suspected PCa,compared the PI-RADS v2.1 scores with the results of prostate biopsy,and analyzed the correlation of the PI-RADS v2.1 scores with CSPCa.We calculated the area under the receiver operating characteristic(ROC)curve(AUC),and described the diagnostic performance of PI-RADS v2.1 for CSPCa in the PZ,TZ and MZs.Results:Transperineal prostate puncture biopsy was successfully completed in all the patients,which revealed 66(61.11%)cases of CSPCa with Gleason score(GS)7-10.Suspected CSPCa was observed in 45(95.74%)of the 47 PZ lesions,8(47.06%)of the 17 TZ le-sions,and 40(90.91%)of the 44 MZ lesions.The PZ,TZ and MZ lesions diagnosed by PI-RADS v2.1 were significantly correlated with CSPCa(r=0.492,P<0.001).The AUCs of PI-RADS v2.1 for PZ,TZ and MZs were 0.644,0.732 and 0.811,with specificities of 66.8%,57.6%and 62.1%,and sensitivities of 57.2%,78.4%and 93.2%,respectively.The negative predictive values were 46.5%,85.7%and 79.2%,and the positive predictive values 76.2%,43.4%and 84.8%,respectively.Conclusion:The PI-RADS v2.1 score has a high diagnostic value for CSPCa in the PZ,TZ and MZs,with the best performance for that in the MZs.
		                        		
		                        		
		                        		
		                        	
9.Development and validation of a stromal-immune signature to predict prognosis in intrahepatic cholangiocarcinoma
Yu-Hang YE ; Hao-Yang XIN ; Jia-Li LI ; Ning LI ; Si-Yuan PAN ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Peng-Cheng WANG ; Chu-Bin LUO ; Rong-Qi SUN ; Jia FAN ; Jian ZHOU ; Zheng-Jun ZHOU ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2024;30(4):914-928
		                        		
		                        			 Background:
		                        			Intrahepatic cholangiocarcinoma (ICC) is a highly desmoplastic tumor with poor prognosis even after curative resection. We investigated the associations between the composition of the ICC stroma and immune cell infiltration and aimed to develop a stromal-immune signature to predict prognosis in surgically treated ICC. 
		                        		
		                        			Patients and methods:
		                        			We recruited 359 ICC patients and performed immunohistochemistry to detect α-smooth muscle actin (α-SMA), CD3, CD4, CD8, Foxp3, CD68, and CD66b. Aniline was used to stain collagen deposition. Survival analyses were performed to detect prognostic values of these markers. Recursive partitioning for a discrete-time survival tree was applied to define a stromal-immune signature with distinct prognostic value. We delineated an integrated stromal-immune signature based on immune cell subpopulations and stromal composition to distinguish subgroups with different recurrence-free survival (RFS) and overall survival (OS) time. 
		                        		
		                        			Results:
		                        			We defined four major patterns of ICC stroma composition according to the distributions of α-SMA and collagen: dormant (α-SMAlow/collagenhigh), fibrogenic (α-SMAhigh/collagenhigh), inert (α-SMAlow/collagenlow), and fibrolytic (α-SMAhigh/collagenlow). The stroma types were characterized by distinct patterns of infiltration by immune cells. We divided patients into six classes. Class I, characterized by high CD8 expression and dormant stroma, displayed the longest RFS and OS, whereas Class VI, characterized by low CD8 expression and high CD66b expression, displayed the shortest RFS and OS. The integrated stromal-immune signature was consolidated in a validation cohort. 
		                        		
		                        			Conclusion
		                        			We developed and validated a stromal-immune signature to predict prognosis in surgically treated ICC. These findings provide new insights into the stromal-immune response to ICC. 
		                        		
		                        		
		                        		
		                        	
10.Establishment of Poly (I∶C)-induced Cytokine Storm Model in Mice and Intervention Effect of Artesunate and Qingfei Paidu Decoction
Hang SHI ; Hongying ZHOU ; Lanfang LI ; Guihua YU ; Hui CHENG ; Canghai LI ; Huajing WANG
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(12):94-103
		                        		
		                        			
		                        			ObjectiveTo observe the intervention effect of artesunate (ART) and Qingfei Paidu decoction (QFPD) on the mouse model of cytokine storm (CS) induced by viral mimic Poly (I∶C). MethodEighty-four SPF male BALB/c mice were randomly divided into seven groups, with 12 mice in each group. Mice, except for those in the blank group (n=12), were subjected to CS model induction by tail vein injection of Poly (I∶C) at 15 mg·kg-1, followed by drug treatments of low-dose ART (ART-l, 10 mg·kg-1), medium-dose ART (ART-m, 20 mg·kg-1), high-dose ART (ART-h, 40 mg·kg-1), Qingfei Paidu Decoction (QFPD, 2.4 g·kg-1), and dexamethasone (DXM, 10 mg·kg-1). After 6 hours, lung tissues, bronchoalveolar lavage fluid (BALF), spleen, lung, and peripheral blood were collected. The lung and spleen indexes were calculated and the number of inflammatory cells in BALF was detected. The pathological changes in lung tissues were observed by hematoxylin-eosin (HE) staining and the levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1β (IL-1β), and IL-6 in BALF were detected by enzyme-linked immunosorbent assay (ELISA). The expression of immune cells in BALF and peripheral blood was detected by flow cytometry. ResultThe analysis of lung and spleen indexes showed that compared with the blank group, the model group showed increased lung and spleen indexes to varying degrees (P<0.05). Compared with the model group, the ART groups showed reduced spleen index (P<0.05) and the ART-l group showed reduced lung index (P<0.05). Additionally, the QFPD group showed reduced lung and spleen indexes (P<0.05). ELISA results showed that except for TNF-α, the levels of IFN-γ, IL-1β, and IL-6 in the model group increased compared with those in the blank group (P<0.05). Compared with the model group, the ART-l group and the QFPD group showed reduced content of TNF-α (P<0.05), and all groups with drug intervention showed reduced content of IFN-γ, IL-1β, and IL-6 (P<0.05). The number of inflammatory cells in BALF showed a downward trend in the model group, and the number of cells increased in the groups with drug intervention except for the DXM group (P<0.05). Flow cytometry showed that compared with the blank group, the model group showed decreased number of CD3 in the peripheral blood (P<0.05), increased Ly-6G and F4/80 (P<0.05), decreased expression of CD45, CD3, and F4/80 in BALF (P<0.05), and increased expressions of Ly-6G (P<0.05). Compared with the model group, the ART groups and QFPD group showed increased CD45 content in peripheral blood (P<0.05), decreased Ly-6G and F4/80 content (P<0.05), increased CD45 and F4/80 content in BALF (P<0.05), and decreased expression of Ly-6G (P<0.05). ConclusionART and QFPD have a good protective effect on Poly (I∶C)-induced CS in mice, and the mechanism is related to the effective intervention in immune cell disorder. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail