1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
2.Association between nonalcoholic fatty liver disease and incidence of inflammatory bowel disease: a nationwide population‑based cohort study
Ying-Hsiang WANG ; Chi-Hsiang CHUNG ; Tien-Yu HUANG ; Chao-Feng CHANG ; Chi-Wei YANG ; Wu-Chien CHIEN ; Yi-Chiao CHENG
Intestinal Research 2025;23(1):76-84
		                        		
		                        			 Background/Aims:
		                        			Nonalcoholic fatty liver disease (NAFLD) is a common disease with severe inflammatory processes associated with numerous gastrointestinal diseases, such as inflammatory bowel disease (IBD). Therefore, we investigated the relationship between NAFLD and IBD and the possible risk factors associated with the diagnosis of IBD.  
		                        		
		                        			Methods:
		                        			This longitudinal nationwide cohort study investigated the risk of IBD in patients with NAFLD alone. General characteristics, comorbidities, and incidence of IBD were also compared.  
		                        		
		                        			Results:
		                        			Patients diagnosed with NAFLD had a significant risk of developing IBD compared to control individuals, who were associated with a 2.245-fold risk of the diagnosis of IBD and a 2.260- and 2.231-fold of increased diagnosis of ulcerative colitis and Crohn’s disease, respectively (P< 0.001). The cumulative risk of IBD increased annually during the follow-up of patients with NAFLD (P< 0.001).  
		                        		
		                        			Conclusions
		                        			Our results emphasize that NAFLD significantly impacts its incidence in patients with NAFLD. If patients with NAFLD present with risk factors, such as diabetes mellitus and dyslipidemia, these conditions should be properly treated with regular follow-ups. Furthermore, we believe that these causes may be associated with the second peak of IBD. 
		                        		
		                        		
		                        		
		                        	
3.Study Protocol of Expanded Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro-EXP)
Jae Hoon MOON ; Eun Kyung LEE ; Wonjae CHA ; Young Jun CHAI ; Sun Wook CHO ; June Young CHOI ; Sung Yong CHOI ; A Jung CHU ; Eun-Jae CHUNG ; Yul HWANGBO ; Woo-Jin JEONG ; Yuh-Seog JUNG ; Kyungsik KIM ; Min Joo KIM ; Su-jin KIM ; Woochul KIM ; Yoo Hyung KIM ; Chang Yoon LEE ; Ji Ye LEE ; Kyu Eun LEE ; Young Ki LEE ; Hunjong LIM ; Do Joon PARK ; Sue K. PARK ; Chang Hwan RYU ; Junsun RYU ; Jungirl SEOK ; Young Shin SONG ; Ka Hee YI ; Hyeong Won YU ; Eleanor WHITE ; Katerina MASTROCOSTAS ; Roderick J. CLIFTON-BLIGH ; Anthony GLOVER ; Matti L. GILD ; Ji-hoon KIM ; Young Joo PARK
Endocrinology and Metabolism 2025;40(2):236-246
		                        		
		                        			 Background:
		                        			Active surveillance (AS) has emerged as a viable management strategy for low-risk papillary thyroid microcarcinoma (PTMC), following pioneering trials at Kuma Hospital and the Cancer Institute Hospital in Japan. Numerous prospective cohort studies have since validated AS as a management option for low-risk PTMC, leading to its inclusion in thyroid cancer guidelines across various countries. From 2016 to 2020, the Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro) enrolled 1,177 patients, providing comprehensive data on PTMC progression, sonographic predictors of progression, quality of life, surgical outcomes, and cost-effectiveness when comparing AS to immediate surgery. The second phase of MAeSTro (MAeSTro-EXP) expands AS to low-risk papillary thyroid carcinoma (PTC) tumors larger than 1 cm, driven by the hypothesis that overall risk assessment outweighs absolute tumor size in surgical decision-making. 
		                        		
		                        			Methods:
		                        			This protocol aims to address whether limiting AS to tumors smaller than 1 cm may result in unnecessary surgeries for low-risk PTCs detected during their rapid initial growth phase. By expanding the AS criteria to include tumors up to 1.5 cm, while simultaneously refining and standardizing the criteria for risk assessment and disease progression, we aim to minimize overtreatment and maintain rigorous monitoring to improve patient outcomes. 
		                        		
		                        			Conclusion
		                        			This study will contribute to optimizing AS guidelines and enhance our understanding of the natural course and appropriate management of low-risk PTCs. Additionally, MAeSTro-EXP involves a multinational collaboration between South Korea and Australia. This cross-country study aims to identify cultural and racial differences in the management of low-risk PTC, thereby enriching the global understanding of AS practices and their applicability across diverse populations. 
		                        		
		                        		
		                        		
		                        	
4.A Novel Point-of-Care Prediction Model for Steatotic Liver Disease:Expected Role of Mass Screening in the Global Obesity Crisis
Jeayeon PARK ; Goh Eun CHUNG ; Yoosoo CHANG ; So Eun KIM ; Won SOHN ; Seungho RYU ; Yunmi KO ; Youngsu PARK ; Moon Haeng HUR ; Yun Bin LEE ; Eun Ju CHO ; Jeong-Hoon LEE ; Su Jong YU ; Jung-Hwan YOON ; Yoon Jun KIM
Gut and Liver 2025;19(1):126-135
		                        		
		                        			 Background/Aims:
		                        			The incidence of steatotic liver disease (SLD) is increasing across all age groups as the incidence of obesity increases worldwide. The existing noninvasive prediction models for SLD require laboratory tests or imaging and perform poorly in the early diagnosis of infrequently screened populations such as young adults and individuals with healthcare disparities. We developed a machine learning-based point-of-care prediction model for SLD that is readily available to the broader population with the aim of facilitating early detection and timely intervention and ultimately reducing the burden of SLD. 
		                        		
		                        			Methods:
		                        			We retrospectively analyzed the clinical data of 28,506 adults who had routine health check-ups in South Korea from January to December 2022. A total of 229,162 individuals were included in the external validation study. Data were analyzed and predictions were made using a logistic regression model with machine learning algorithms. 
		                        		
		                        			Results:
		                        			A total of 20,094 individuals were categorized into SLD and non-SLD groups on the basis of the presence of fatty liver disease. We developed three prediction models: SLD model 1, which included age and body mass index (BMI); SLD model 2, which included BMI and body fat per muscle mass; and SLD model 3, which included BMI and visceral fat per muscle mass. In the derivation cohort, the area under the receiver operating characteristic curve (AUROC) was 0.817 for model 1, 0.821 for model 2, and 0.820 for model 3. In the internal validation cohort, 86.9% of individuals were correctly classified by the SLD models. The external validation study revealed an AUROC above 0.84 for all the models. 
		                        		
		                        			Conclusions
		                        			As our three novel SLD prediction models are cost-effective, noninvasive, and accessible, they could serve as validated clinical tools for mass screening of SLD. 
		                        		
		                        		
		                        		
		                        	
5.Impact of iron-deficiency anemia on short-term outcomes after resection of colorectal cancer liver metastasis: a US National (Nationwide) Inpatient Sample (NIS) analysis
Ko-Chao LEE ; Yu-Li SU ; Kuen-Lin WU ; Kung-Chuan CHENG ; Ling-Chiao SONG ; Chien-En TANG ; Hong-Hwa CHEN ; Kuan-Chih CHUNG
Annals of Coloproctology 2025;41(2):119-126
		                        		
		                        			 Purpose:
		                        			Colorectal cancer (CRC) often spreads to the liver, necessitating surgical treatment for CRC liver metastasis (CRLM). Iron-deficiency anemia is common in CRC patients and is associated with fatigue and weakness. This study investigated the effects of iron-deficiency anemia on the outcomes of surgical resection of CRLM. 
		                        		
		                        			Methods:
		                        			This population-based, retrospective study evaluated data from adults ≥20 years old with CRLM who underwent hepatic resection. All patient data were extracted from the 2005–2018 US National (Nationwide) Inpatient Sample (NIS) database. The outcome measures were in-hospital outcomes including 30-day mortality, unfavorable discharge, and prolonged length of hospital stay (LOS), and short-term complications such as bleeding and infection. Associations between iron-deficiency anemia and outcomes were determined using logistic regression analysis. 
		                        		
		                        			Results:
		                        			Data from 7,749 patients (representing 37,923 persons in the United States after weighting) were analyzed. Multivariable analysis revealed that iron-deficiency anemia was significantly associated with an increased risk of prolonged LOS (adjusted odds ratio [aOR], 2.76; 95% confidence interval [CI], 2.30–3.30), unfavorable discharge (aOR, 2.42; 95% CI, 1.83–3.19), bleeding (aOR, 5.05; 95% CI, 2.92–8.74), sepsis (aOR, 1.60; 95% CI, 1.04–2.46), pneumonia (aOR, 2.54; 95% CI, 1.72–3.74), and acute kidney injury (aOR, 1.71; 95% CI, 1.24–2.35). Subgroup analyses revealed consistent associations between iron-deficiency anemia and prolonged LOS across age, sex, and obesity status categories. 
		                        		
		                        			Conclusion
		                        			In patients undergoing hepatic resection for CRLM, iron-deficiency anemia is an independent risk factor for prolonged LOS, unfavorable discharge, and several critical postoperative complications. These findings underscore the need for proactive anemia management to optimize surgical outcomes. 
		                        		
		                        		
		                        		
		                        	
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
7.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
8.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
		                        		
		                        			
		                        			 Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients. 
		                        		
		                        		
		                        		
		                        	
9.Study Protocol of Expanded Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro-EXP)
Jae Hoon MOON ; Eun Kyung LEE ; Wonjae CHA ; Young Jun CHAI ; Sun Wook CHO ; June Young CHOI ; Sung Yong CHOI ; A Jung CHU ; Eun-Jae CHUNG ; Yul HWANGBO ; Woo-Jin JEONG ; Yuh-Seog JUNG ; Kyungsik KIM ; Min Joo KIM ; Su-jin KIM ; Woochul KIM ; Yoo Hyung KIM ; Chang Yoon LEE ; Ji Ye LEE ; Kyu Eun LEE ; Young Ki LEE ; Hunjong LIM ; Do Joon PARK ; Sue K. PARK ; Chang Hwan RYU ; Junsun RYU ; Jungirl SEOK ; Young Shin SONG ; Ka Hee YI ; Hyeong Won YU ; Eleanor WHITE ; Katerina MASTROCOSTAS ; Roderick J. CLIFTON-BLIGH ; Anthony GLOVER ; Matti L. GILD ; Ji-hoon KIM ; Young Joo PARK
Endocrinology and Metabolism 2025;40(2):236-246
		                        		
		                        			 Background:
		                        			Active surveillance (AS) has emerged as a viable management strategy for low-risk papillary thyroid microcarcinoma (PTMC), following pioneering trials at Kuma Hospital and the Cancer Institute Hospital in Japan. Numerous prospective cohort studies have since validated AS as a management option for low-risk PTMC, leading to its inclusion in thyroid cancer guidelines across various countries. From 2016 to 2020, the Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro) enrolled 1,177 patients, providing comprehensive data on PTMC progression, sonographic predictors of progression, quality of life, surgical outcomes, and cost-effectiveness when comparing AS to immediate surgery. The second phase of MAeSTro (MAeSTro-EXP) expands AS to low-risk papillary thyroid carcinoma (PTC) tumors larger than 1 cm, driven by the hypothesis that overall risk assessment outweighs absolute tumor size in surgical decision-making. 
		                        		
		                        			Methods:
		                        			This protocol aims to address whether limiting AS to tumors smaller than 1 cm may result in unnecessary surgeries for low-risk PTCs detected during their rapid initial growth phase. By expanding the AS criteria to include tumors up to 1.5 cm, while simultaneously refining and standardizing the criteria for risk assessment and disease progression, we aim to minimize overtreatment and maintain rigorous monitoring to improve patient outcomes. 
		                        		
		                        			Conclusion
		                        			This study will contribute to optimizing AS guidelines and enhance our understanding of the natural course and appropriate management of low-risk PTCs. Additionally, MAeSTro-EXP involves a multinational collaboration between South Korea and Australia. This cross-country study aims to identify cultural and racial differences in the management of low-risk PTC, thereby enriching the global understanding of AS practices and their applicability across diverse populations. 
		                        		
		                        		
		                        		
		                        	
10.A Novel Point-of-Care Prediction Model for Steatotic Liver Disease:Expected Role of Mass Screening in the Global Obesity Crisis
Jeayeon PARK ; Goh Eun CHUNG ; Yoosoo CHANG ; So Eun KIM ; Won SOHN ; Seungho RYU ; Yunmi KO ; Youngsu PARK ; Moon Haeng HUR ; Yun Bin LEE ; Eun Ju CHO ; Jeong-Hoon LEE ; Su Jong YU ; Jung-Hwan YOON ; Yoon Jun KIM
Gut and Liver 2025;19(1):126-135
		                        		
		                        			 Background/Aims:
		                        			The incidence of steatotic liver disease (SLD) is increasing across all age groups as the incidence of obesity increases worldwide. The existing noninvasive prediction models for SLD require laboratory tests or imaging and perform poorly in the early diagnosis of infrequently screened populations such as young adults and individuals with healthcare disparities. We developed a machine learning-based point-of-care prediction model for SLD that is readily available to the broader population with the aim of facilitating early detection and timely intervention and ultimately reducing the burden of SLD. 
		                        		
		                        			Methods:
		                        			We retrospectively analyzed the clinical data of 28,506 adults who had routine health check-ups in South Korea from January to December 2022. A total of 229,162 individuals were included in the external validation study. Data were analyzed and predictions were made using a logistic regression model with machine learning algorithms. 
		                        		
		                        			Results:
		                        			A total of 20,094 individuals were categorized into SLD and non-SLD groups on the basis of the presence of fatty liver disease. We developed three prediction models: SLD model 1, which included age and body mass index (BMI); SLD model 2, which included BMI and body fat per muscle mass; and SLD model 3, which included BMI and visceral fat per muscle mass. In the derivation cohort, the area under the receiver operating characteristic curve (AUROC) was 0.817 for model 1, 0.821 for model 2, and 0.820 for model 3. In the internal validation cohort, 86.9% of individuals were correctly classified by the SLD models. The external validation study revealed an AUROC above 0.84 for all the models. 
		                        		
		                        			Conclusions
		                        			As our three novel SLD prediction models are cost-effective, noninvasive, and accessible, they could serve as validated clinical tools for mass screening of SLD. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail