1.Constructing a model of degenerative scoliosis using finite element method:biomechanical analysis in etiology and treatment
Kai HE ; Wenhua XING ; Shengxiang LIU ; Xianming BAI ; Chen ZHOU ; Xu GAO ; Yu QIAO ; Qiang HE ; Zhiyu GAO ; Zhen GUO ; Aruhan BAO ; Chade LI
Chinese Journal of Tissue Engineering Research 2025;29(3):572-578
BACKGROUND:Degenerative scoliosis is defined as a condition that occurs in adulthood with a coronal cobb angle of the spine>10° accompanied by sagittal deformity and rotational subluxation,which often produces symptoms of spinal cord and nerve compression,such as lumbar pain,lower limb pain,numbness,weakness,and neurogenic claudication.The finite element method is a mechanical analysis technique for computer modelling,which can be used for spinal mechanics research by building digital models that can realistically restore the human spine model and design modifications. OBJECTIVE:To review the application of finite element method in the etiology and treatment of degenerative scoliosis. METHODS:The literature databases CNKI,PubMed,and Web of Science were searched for articles on the application of finite element method in degenerative scoliosis published before October 2023.Search terms were"finite element analysis,biomechanics,stress analysis,degenerative scoliosis,adult spinal deformity"in Chinese and English.Fifty-four papers were finally included. RESULTS AND CONCLUSION:(1)The biomechanical findings from the degenerative scoliosis model constructed using the finite element method were identical to those from the in vivo experimental studies,which proves that the finite element method has a high practical value in degenerative scoliosis.(2)The study of the etiology and treatment of degenerative scoliosis by the finite element method is conducive to the prevention of the occurrence of the scoliosis,slowing down the progress of the scoliosis,the development of a more appropriate treatment plan,the reduction of complications,and the promotion of the patients'surgical operation.(3)The finite element method has gradually evolved from a single bony structure to the inclusion of soft tissues such as muscle ligaments,and the small sample content is increasingly unable to meet the research needs.(4)The finite element method has much room for exploration in degenerative scoliosis.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.Effect of Shenxiong Huanglian Jiedu Decoction on Neuronal Damage and Aβ Clearance in Mice Model of Alzheimer's Disease
Jing LIU ; Kang CHEN ; Yushun ZHOU ; Zhezuo ZHANG ; Guran YU ; Hao LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):43-52
ObjectiveTo investigate the effects of Shenxiong Huanglian Jiedu decoction on the clearance of amyloid β-protein (Aβ) and neuronal damage in the mouse model of Alzheimer's disease (AD). MethodsA total of 36 SPF-grade 2-month-old C57BL/6J mice were used in this study, and the modeling was performed by bilateral hippocampal injection of Aβ oligomers in C57BL/6J mice. The experiment was conducted with a blank group, a sham operation group, a model group, low- and high-dose (3.27,6.54 g·kg-1, respectively) Shenxiong Huanglian Jiedu decoction groups, and a positive control (donepezil hydrochloride, 0.65 mg·kg-1) group. At the end of the drug intervention, the learning and memory abilities and the activities of mice were evaluated by the Morris water maze and open field tests. Brain histopathology was examined by hematoxylin-eosin and Nissl staining. Additionally, in vivo imaging was employed to measure the metabolism of fluorescent Aβ in the cerebrospinal fluid, and staining of ionized calcium-binding adapter molecule-1 (Iba-1) was employed to assess microglial activation in the hippocampal tissue. Additionally, neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) levels in the brain tissue and serum were determined by the immunofluorescence assay and enzyme-linked immunosorbent assay. Western blot was conducted to determine the expression of inflammation and pathway-related proteins in the hippocampal tissue. ResultsCompared with the blank group and the sham operation group, the escape latency of the mice in the model group was prolonged, the platform residence time was shortened, the hippocampal tissue showed pathological manifestations such as neuronal pyknosis, Nissl body dissolution, and microglia activation. The metabolic rate of fluorescent Aβ through cerebrospinal fluid was slowed down, and the expression levels of BDNF, NT-3, and interleukin-10 (IL-10) in the hippocampus were significantly decreased (P<0.01). The expression levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and phosphorylated nuclear transcription factor-κB (p-NF-κB p65) in hippocampus were significantly increased (P<0.05, P<0.01). Compared with the model group, the escape latency of mice in the low and high dose groups of Chinese medicine and donepezil group was shortened, and the platform residence time was prolonged. Neuronal karyopyknosis, Nissl body dissolution and microglia activation in hippocampus were improved. Fluorescence Aβ was metabolized faster by cerebrospinal fluid. The expression of BDNF and NT-3 in hippocampus was increased (P<0.01), and the expression of TLR4, MyD88 and p-NF-κB p65 was significantly decreased (P<0.05, P<0.01). The expression of TNF-α in the hippocampus of the high-dose group was significantly decreased (P<0.05), and the expression of IL-10 was significantly increased (P<0.05). The expression of TNF-α, IL-6 and IL-1β in the hippocampus of the donepezil group was significantly decreased (P<0.05, P<0.01). ConclusionShenxiong Huanglian Jiedu decoction may mitigate neuronal damage and enhance cerebrospinal fluid flow in the mouse model of AD, thereby promoting the clearance of Aβ and improving the learning and memory abilities. These beneficial effects are likely mediated through the inhibition of microglial activation, reduction of inflammation, and modulation of the TLR4/MyD88/NF-κB signaling pathway.
4.Effect of Shenxiong Huanglian Jiedu Decoction on Neuronal Damage and Aβ Clearance in Mice Model of Alzheimer's Disease
Jing LIU ; Kang CHEN ; Yushun ZHOU ; Zhezuo ZHANG ; Guran YU ; Hao LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):43-52
ObjectiveTo investigate the effects of Shenxiong Huanglian Jiedu decoction on the clearance of amyloid β-protein (Aβ) and neuronal damage in the mouse model of Alzheimer's disease (AD). MethodsA total of 36 SPF-grade 2-month-old C57BL/6J mice were used in this study, and the modeling was performed by bilateral hippocampal injection of Aβ oligomers in C57BL/6J mice. The experiment was conducted with a blank group, a sham operation group, a model group, low- and high-dose (3.27,6.54 g·kg-1, respectively) Shenxiong Huanglian Jiedu decoction groups, and a positive control (donepezil hydrochloride, 0.65 mg·kg-1) group. At the end of the drug intervention, the learning and memory abilities and the activities of mice were evaluated by the Morris water maze and open field tests. Brain histopathology was examined by hematoxylin-eosin and Nissl staining. Additionally, in vivo imaging was employed to measure the metabolism of fluorescent Aβ in the cerebrospinal fluid, and staining of ionized calcium-binding adapter molecule-1 (Iba-1) was employed to assess microglial activation in the hippocampal tissue. Additionally, neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) levels in the brain tissue and serum were determined by the immunofluorescence assay and enzyme-linked immunosorbent assay. Western blot was conducted to determine the expression of inflammation and pathway-related proteins in the hippocampal tissue. ResultsCompared with the blank group and the sham operation group, the escape latency of the mice in the model group was prolonged, the platform residence time was shortened, the hippocampal tissue showed pathological manifestations such as neuronal pyknosis, Nissl body dissolution, and microglia activation. The metabolic rate of fluorescent Aβ through cerebrospinal fluid was slowed down, and the expression levels of BDNF, NT-3, and interleukin-10 (IL-10) in the hippocampus were significantly decreased (P<0.01). The expression levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and phosphorylated nuclear transcription factor-κB (p-NF-κB p65) in hippocampus were significantly increased (P<0.05, P<0.01). Compared with the model group, the escape latency of mice in the low and high dose groups of Chinese medicine and donepezil group was shortened, and the platform residence time was prolonged. Neuronal karyopyknosis, Nissl body dissolution and microglia activation in hippocampus were improved. Fluorescence Aβ was metabolized faster by cerebrospinal fluid. The expression of BDNF and NT-3 in hippocampus was increased (P<0.01), and the expression of TLR4, MyD88 and p-NF-κB p65 was significantly decreased (P<0.05, P<0.01). The expression of TNF-α in the hippocampus of the high-dose group was significantly decreased (P<0.05), and the expression of IL-10 was significantly increased (P<0.05). The expression of TNF-α, IL-6 and IL-1β in the hippocampus of the donepezil group was significantly decreased (P<0.05, P<0.01). ConclusionShenxiong Huanglian Jiedu decoction may mitigate neuronal damage and enhance cerebrospinal fluid flow in the mouse model of AD, thereby promoting the clearance of Aβ and improving the learning and memory abilities. These beneficial effects are likely mediated through the inhibition of microglial activation, reduction of inflammation, and modulation of the TLR4/MyD88/NF-κB signaling pathway.
5.Efficacy comparison of small-incision lenticule extraction and femtosecond assisted laser in situ keratomileusis in the treatment of myopia with astigmatism
Min ZHOU ; Suying YU ; Wanjiang DONG ; Long CHEN ; Miao HE
International Eye Science 2025;25(2):292-296
AIM: To compare the efficacy of small-incision lenticule extraction(SMILE)and femtosecond assisted laser in situ keratomileusis(FS-LASIK)in the treatment of patients with myopia and astigmatism.METHODS: Retrospective analysis. A total of 100 cases(200 eyes)of patients with myopia and astigmatism treated in our hospital from December 2021 to December 2022 were collected. Among them, 50 cases(100 eyes)were divided into SMILE group and 50 cases(100 eyes)were divided into FS-LASIK group according to the treatment plans. The visual acuity and astigmatism, corneal morphology parameters, subjective visual quality scores, ocular surface indicators, postoperative complications, and quality of life were compared between the two groups before and after surgery.RESULTS: There was no significant difference in uncorrected visual acuity(UCVA), best corrected visual acuity(BCVA), astigmatism, corneal asphericity Q value, corneal surface regularity index(SRI), corneal thickness, and corneal curvature between the two groups before surgery and at 1 d, 1, and 6 mo after surgery(all P>0.05). At 1 and 6 mo after surgery, the subjective visual quality score, the quality of life score, Schirmer I test(SⅠt)and tear film break-up time(BUT)in the SMILE group were better than that in the FS-LASIK group(all P<0.05). The incidence of complications in the SMILE group was lower than that in the FS-LASIK group at 6 mo after surgery(P=0.005).CONCLUSION: Both SMILE and FS-LASIK have good clinical effects in the treatment of myopia with astigmatism, but the SMILE could alleviate ocular surface injury, reduce the risk of complications and improve the quality of lifes for patients.
6.Effect of Berberine-Baicalin Combination on Fecal Microbiota Transplantation-induced Type 2 Diabetes Mellitus Due to Internal Accumulation of Dampness-heat in Mice from Perspectives of Gut Microbiota and Metabolomics
Mengjie CHEN ; Yimin LIU ; Yun ZHOU ; Keming YU ; Min XIA ; Hongning LIU ; Yanhua JI ; Zhijun ZENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):52-64
ObjectiveTo investigate the mechanisms by which the combination of berberine (BBR) and baicalin (BAI) ameliorates type 2 diabetes mellitus (T2DM) due to internal accumulation of dampness-heat from the perspectives of gut microbiota and metabolomics. MethodsAntibiotics were used to induce pseudo-sterile mice. Thirty pseudo-sterile mice were randomized into a normal fecal microbiota transplantation group (n=10) and a T2DM (syndrome of internal accumulation of dampness-heat) fecal microbiota transplantation group (n=20). The mice were then administrated with suspensions of fecal microbiota from healthy volunteers and a patient with T2DM due to internal accumulation of dampness-heat by gavage, respectively. Each mouse received 200 µL suspension every other day for a total of 15 times to reshape the gut microbiota. The T2DM model mice were then assigned into a model group (n=8) and a BBR-BAI group (n=11). BBR was administrated at a dose of 200 mg·kg-1, and BAI was administrated in a ratio of BBR-BAI 10∶1 based on preliminary research findings. The administration lasted for 8 consecutive weeks. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin (INS), triglycerides (TG), total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels were measured to evaluate the effects of the BBR-BAI combination on glucose and lipid metabolism and liver function in T2DM mice. Hematoxylin-eosin staining was employed to observe pathological changes in the colon tissue. The expression of claudin-1, zonula occludens-1 (ZO-1), and occludin in the colon tissue was determined by Western blot. Real-time quantitative polymerase chain reaction(Real-time PCR) was employed to assess the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the colon tissue. The fecal microbiota composition and differential metabolites were analyzed by 16S rRNA sequencing and ultra-high performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (UPLC-Q-TOF-MS), respectively. ResultsThe BBR-BAI combination lowered the FBG, HbA1c, and INS levels (P<0.05, P<0.01) and alleviated insulin resistance (P<0.01) in T2DM mice. Additionally, BBR-BAI elevated the levels of ZO-1, occludin, and claudin-1 (P<0.05, P<0.01) and down-regulated the expression levels of TNF-α, IL-1β, and IL-6 in the colon (P<0.05, P<0.01). The results of 16S rRNA sequencing showed that BBR-BAI increased the relative abundance of Ligilactobacillus, Phascolarctobacterium, and Akkermansia (P<0.05), while significantly decreasing the relative abundance of Alistipes, Odoribacter, and Colidextribacter (P<0.05). UPLC-Q-TOF-MS identified 28 differential metabolites, which were primarily involved in arachidonic acid metabolism and α-linolenic acid metabolism. ConclusionBBR-BAI can ameliorate T2DM due to internal accumulation of dampness-heat by modulating the relative abundance of various bacterial genera in the gut microbiota and the expression of fecal metabolites.
7.Downregulation of LINC00638 contributes to the pathogenesis of rheumatoid arthritis-associated interstitial lung disease via inhibiting the Nrf2/ARE signaling pathway
Zhuojun LIAO ; Naiwang TANG ; Jiahui CHEN ; Xueying SUN ; Jiamin LU ; Qin WU ; Ronghuan YU ; Ying ZHOU
Chinese Journal of Clinical Medicine 2025;32(3):421-431
Objective To identify long non-coding RNA (lncRNA) associated with rheumatoid arthritis-associated interstitial lung disease (RA-ILD) and investigate their mechanisms. Methods Peripheral blood samples were collected from RA-ILD patients (n=3), RA patients without lung involvement (n=3), and healthy controls (n=3). Next-generation sequencing was performed to screen differentially expressed lncRNA. A human fibrotic lung cell model was established by inducing the MRC-5 cell line with transforming growth factor-β (TGF-β). Following siRNA-mediated knockdown of target genes, changes in inflammatory and oxidative stress-related genes were analyzed via real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Western blotting and dual-luciferase reporter (DLR) assays were used to validate protein expression, ubiquitination levels, and nuclear translocation of oxidative stress regulators, and antioxidant response element (ARE) transcriptional activity. Rescue experiments were conducted to confirm the role of target lncRNA in oxidative stress and inflammation in fibrotic lung cells. Results High-throughput sequencing revealed significant downregulation of LINC00638 in RA-ILD patients. Knockdown of LINC00638 markedly reduced transcriptional levels of interleukin (IL)-4, nuclear factor erythroid-2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and superoxide dismutase 2 (SOD2), while increasing IL-6, IL-1β, interferon-γ (IFN-γ), and reactive oxygen species (ROS) levels. Furthermore, LINC00638 knockdown decreased Nrf2 protein expression, increased its ubiquitination, reduced nuclear translocation, and suppressed ARE transcriptional activity. In MRC-5 cells, LINC00638 knockdown combined with N-acetylcysteine treatment restored Nrf2 and HO-1 levels while reducing IL-6 expression. Conclusions LINC00638 suppresses inflammatory responses in RA-ILD by activating the Nrf2/ARE antioxidant signaling pathway, suggesting its potential as a therapeutic target for diagnosis and treatment.
8.Clinical Practice of Coronary Microvascular Disease with the Integrated Approach of Traditional Chinese and Western Medicine
Aolin LI ; Xinnong CHEN ; Lerong YU ; Jun GE ; Wei ZHOU ; Kangzheng GUO ; Junping ZHANG
Journal of Traditional Chinese Medicine 2025;66(16):1662-1667
This paper analyzed the traditional Chinese medicine (TCM) and western medical understanding of coronary microvascular disease (CMVD) from the three dimensions of "disease-syndrome-symptom". In western medicine, by summarizing the suspected diagnosis and understanding of CMVD, it is believed that inflammatory responses and vascular endothelial damage are the key mechanisms of the pathogenesis. From the perspective of TCM, the disease location is at blood, vessels and heart, and the fundamental cause is spleen and kidney depletion, closely realted to phlegm, stasis, toxin, wind and qi. Integrating the understanding of both TCM and western medicine, clinical treatment advocates taking the CMVD pathology as the base, and the TCM understanding of pathogenesis as the main focus. The properties of Chinese herbal medicinals is used as the guidance for medication, and the pharmacological understanding as the assisstance of treatment, with the medical history and the severity of the condition are additionally considered. It is finally proposed that during the acute phase, the methods of nourishing yin and resolving toxins, softening hardness and dissipating masses, dispelling wind and unblocking collaterals should be applied to alleviate the emergency. In the subacute phase, the focus should be on raising and lifting qi promote its movement, with flexible use of medicinals that can unblock yang. In the remission phase, the method of tonifying spleen and fortifying kidney should be used to maintain the stability of the condition.
9.Effects of superoxide dismutase inhibition of AFP expression on the malignant biological behavior of PLC/PRF/5 liver cancer cells
Yi CHEN ; Baoying CHEN ; Yuli ZHOU ; Haixia XU ; Yu CAO ; Yue GU ; Mingyue ZHU ; Mengsen LI
China Pharmacy 2025;36(17):2120-2126
OBJECTIVE To explore the effect of superoxide dismutase (SOD) administration on the malignant behavior of PLC/PRF/5 liver cancer cells, and analyze the correlation between SOD and alpha-fetoprotein (AFP) expression, to provide new ideas for targeting AFP with SOD as a drug for hepatocellular carcinoma. METHODS Normal human liver cells L-02, AFP- negative human liver cancer cells HLE, and AFP-positive human liver cancer cells PLC/PRF/5 were used as experimental cells. Western blot assay and SOD activity detection kit were used to detect the expression of AFP, SOD and activity of SOD in cells before and after changing AFP expression; the effects of different concentrations of SOD [0 (control), 0.188, 0.375, 0.75, 1.5, 3 U/mL] administration on the migration and proliferation of PLC/PRF/5 cells were detected using cell scratch assay and CCK-8 assay. The effects of SOD overexpression on the expression of malignant biological behavior-related proteins AFP and sarcoma virus protein (Src) in PLC/PRF/5 cells were detected using Western blot. RESULTS Compared with L-02 group and HLE group, the expression levels of SOD1 and SOD2, and SOD activity in PLC/PRF/5 cells were significantly reduced (P<0.05). After down-regulating AFP expression in PLC/PRF/ 5 cells, compared with PLC/PRF/5 group, the expression levels of SOD1 and SOD2, as well as SOD activity, were significantly increased in the PLC/PRF/5-shAFP group (low-expression) (P<0.05). After 48 hours of SOD treatment, compared with control group, the scratch healing rates of PLC/PRF/5 cells in the 0.375, 0.75, 1.5 and 3 U/mL SOD groups were significantly reduced (P<0.05); after 72 hours of SOD treatment, compared with control group, the scratch healing rates of PLC/PRF/5 cells in the 0.375, 0.75, and 1.5 U/mL SOD groups were significantly reduced (P<0.05 or P<0.01). Compared with control group, proliferation rates of PLC/PRF/5 cells were significantly reduced in the 0.375, 0.75, 1.5 and 3 U/mL SOD groups (P<0.05 or P<0.01). Compared with the PLC/PRF/5 group before up-regulating SOD1 and SOD2 expression, the expression levels of AFP and Src in the PLC/PRF/5-oeSOD1 and PLC/PRF/5-oeSOD2 groups (over-expression) after up-regulating SOD1 and SOD2 expression were significantly reduced (P<0.05). CONCLUSIONS A certain concentration of SOD can inhibit malignant behavior such as migration and proliferation of PLC/PRF/5 cells, and the expression level and activity of SOD are negatively correlated with AFP.
10.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.

Result Analysis
Print
Save
E-mail