1.Maillard Reaction in Processing of Traditional Chinese Medicine: A Review
Kai WANG ; Zhenni QU ; Yu BI ; Dianhua SHI ; Yanpeng DAI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):268-278
The Maillard reaction is a complex process in which amine compounds such as amino acids, peptides, and proteins undergo condensation, polymerization, and other reactions with carbonyl compounds such as reducing sugars, ketones, and aldehydes at room temperature or under heating conditions, ultimately producing substances such as melanoidins and aromatic compounds. The processing of traditional Chinese medicine(TCM) often involves heating and the addition of auxiliary materials, providing complete conditions for the occurrence of the Maillard reaction. The Maillard reaction is affected by various factors such as temperature, pH, moisture, substrate, reaction time and pressure, the progress of the reaction also affected by different processing technologies of TCM and the addition of different excipients. The Maillard reaction involves multiple substances, most of which have significant physiological activity or toxicity, affecting the efficacy and pharmacological effects of TCM. It can also produce various flavor substances and browning products that change the flavor and color of TCM. The Maillard reaction mechanism, influencing factors, related components, and the impact of Maillard reaction on various aspects of TCM processing are reviewed from multiple perspectives in this article, providing reference for the further improvement of processing mechanism and quality control of TCM.
2.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
3.Taste Receptors and Traditional Chinese Medicine Theory of Five Flavors: A Review
Xiaoxiao XU ; Hongjie BAI ; Yu BI ; Zhenni QU ; Dianhua SHI ; Yanpeng DAI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):322-330
Taste is a sensation produced by the reaction of substances in the mouth with taste receptor cells, and a normal taste function is essential for our daily life and health. As receivers of taste molecules, taste receptors include sour, bitter, sweet, salty, and umami receptors, which are mainly distributed in the oral cavity, gastrointestinal tract, respiratory tract epithelium and other organs and play a physiological role. Traditional Chinese medicine (TCM) has five flavors (sour, bitter, sweet, pungent, and salty), which are closely related to the efficacy. Except the pungent flavor and umami taste receptors, the other five taste receptors correspond to the five flavors in the TCM theory, while the correlations between them have not been studied, such as those between bitter receptors and bitter TCM and between sweet receptors and sweet TCM. This article reviews the research reports on taste receptors in recent years. By analyzing the relationships of taste receptors with five flavors of TCM, signaling mechanisms, and diseases based on "receptor-TCM" correlations, this article puts forward the possibility of combining the TCM theory of five flavors with modern biomedical research, providing a reference for the research on "flavors" in TCM and the correlations between TCM and taste receptors.
4.Taste Receptors and Traditional Chinese Medicine Theory of Five Flavors: A Review
Xiaoxiao XU ; Hongjie BAI ; Yu BI ; Zhenni QU ; Dianhua SHI ; Yanpeng DAI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):322-330
Taste is a sensation produced by the reaction of substances in the mouth with taste receptor cells, and a normal taste function is essential for our daily life and health. As receivers of taste molecules, taste receptors include sour, bitter, sweet, salty, and umami receptors, which are mainly distributed in the oral cavity, gastrointestinal tract, respiratory tract epithelium and other organs and play a physiological role. Traditional Chinese medicine (TCM) has five flavors (sour, bitter, sweet, pungent, and salty), which are closely related to the efficacy. Except the pungent flavor and umami taste receptors, the other five taste receptors correspond to the five flavors in the TCM theory, while the correlations between them have not been studied, such as those between bitter receptors and bitter TCM and between sweet receptors and sweet TCM. This article reviews the research reports on taste receptors in recent years. By analyzing the relationships of taste receptors with five flavors of TCM, signaling mechanisms, and diseases based on "receptor-TCM" correlations, this article puts forward the possibility of combining the TCM theory of five flavors with modern biomedical research, providing a reference for the research on "flavors" in TCM and the correlations between TCM and taste receptors.
5.Distribution of pupil diameter and its association with myopia in school age children
Chinese Journal of School Health 2025;46(8):1194-1197
Objective:
To investigate the distribution of pupil diameter and its association with myopia in school age children, providing ideas into the mechanisms of the role of pupil diameter in the onset and development of myopia.
Methods:
Adopting a combination of stratified cluster random sampling and convenience sampling method, 3 839 children from six schools in Shandong Province were included in September 2021. Pupil diameters distribution was analyzed by age, sex, and myopic status. Pearson correlation analysis was used to assess the relationship between pupil diameter and cycloplegic spherical equivalent (SE), as well as axial length (AL) and other variables. Propensity score matching (PSM) was applied to match myopic and non myopic children at a 1∶1 ratio based on age and sex. A generalized linear model (GLM) was constructed with pupil diameter as the dependent variable to identify independent factors influencing pupil size and its association with myopia.
Results:
The mean pupil diameter of school age children was (5.77±0.80)mm. Pupil diameter exhibited a significant increasing trend with age ( F =49.34, P trend < 0.01). Myopic children had a significantly larger mean pupil diameter [(6.10±0.73)mm] compared to non myopic children [(5.62±0.79)mm] with a statistically significant difference( t=18.10, P <0.01). Multivariable GLM analysis, adjusted for age, amplitude of accommodation, and uncorrected visual acuity, revealed a negative correlation between pupil diameter and cycloplegic SE (before PSM: β =-0.089, after PSM: β =-0.063, both P <0.01).
Conclusions
Myopic school age children exhibite larger pupil diameters than their non myopic counterparts. Pupil diameter may serve as a potential indicator for monitoring myopia development in school age children.
6.Clinical features and early warning indicators of patients with acute-on-chronic liver failure and bacterial infection
Zhanhu BI ; Linxu WANG ; Haifeng HU ; Hong DU ; Yidi DING ; Xiaofei YANG ; Jiayi ZHAN ; Fei HU ; Denghui YU ; Hongkai XU ; Jianqi LIAN
Journal of Clinical Hepatology 2024;40(4):760-766
ObjectiveTo investigate the clinical features of patients with acute-on-chronic liver failure (ACLF) and bacterial infection and early warning indicators associated with multidrug-resistant infections. MethodsA retrospective analysis was performed for 130 patients with ACLF and bacterial infection who attended The Second Affiliated Hospital of Air Force Medical University from January 1, 2010 to December 31, 2021, and according to the drug susceptibility results, the patients were divided into multidrug-resistant (MDR) bacterial infection group with 80 patients and non-MDR bacterial infection group with 50 patients. General information and laboratory examination results were compared between the two groups to screen for the early warning indicators associated with MDR bacterial infection. The Student’s t-test was used for comparison of normally distributed continuous data with homogeneity of variance between two groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data or continuous data with heterogeneity of variance between two groups; the chi-square test or the Fisher’s exact test was used for comparison of categorical data between two groups. The binary logistic regression analysis and the receiver operating characteristic (ROC) curve were used to assess the predictive value of early warning indicators. ResultsAmong the 130 patients with ACLF and bacterial infection, sputum (27.7%) was the most common specimen for detection, followed by blood (24.6%), urine (18.5%), and ascites (17.7%). Bacterial infections were dominated by Gram-negative bacteria (58.5%). Of all bacteria, Escherichia coli (18.5%), Klebsiella pneumoniae (14.6%), and Enterococcus faecium (13.8%) were the most common pathogens. Gram-positive bacteria had a high resistance rate to the antibacterial drugs such as erythromycin (72.2%), penicillin (57.4%), ampicillin (55.6%), and ciprofloxacin (53.7%), while Gram-negative bacteria had a high resistance rate to the antibacterial drugs such as ampicillin (73.3%), cefazolin (50.0%), and cefepime (47.4%). The patients with ACLF and bacterial infection had a relatively high rate of MDR bacterial infection (61.5%). Comparison of clinical data between the two groups showed that compared with the patients with non-MDR bacterial infection, the patients with MDR bacterial infection had significantly higher levels of alanine aminotransferase (Z=2.089, P=0.037), aspartate aminotransferase (Z=2.063, P=0.039), white blood cell count (Z=2.207, P=0.027), and monocyte count (Z=4.413, P<0.001). The binary logistic regression analysis showed that monocyte count was an independent risk factor for MDR bacterial infection (odds ratio=7.120, 95% confidence interval [CI]: 2.478 — 20.456,P<0.001) and had an area under the ROC curve of 0.686 (95%CI: 0.597 — 0.776) in predicting ACLF with MDR bacterial infection(P<0.001), with the optimal cut-off value of 0.50×109/L, a sensitivity of 0.725, and a specificity of 0.400. ConclusionACLF combined with bacterial infections is mainly caused by Gram-negative bacteria, with the common pathogens of Escherichia coli and Klebsiella pneumoniae and a relatively high MDR rate in clinical practice. An increase in monocyte count can be used as an early warning indicator to distinguish MDR bacterial infection from non-MDR bacterial infection.
7.Study on original identification of Rhei Radix et Rhizoma decoction pieces based on electronic sensory system and GC-IMS technology
Shuo YANG ; Zhongli XU ; Xinzhi ZHAO ; Dianhua SHI ; Yanpeng DAI ; Yu BI ; Yizhou XIN
China Pharmacy 2024;35(9):1076-1081
OBJECTIVE To investigate the variations in taste, aroma and volatile organic compounds of Rhei Radix et Rhizoma decoction pieces derived from different sources, and to identify their origins. METHODS The flavor, odor and volatile organic compounds of Rhei Radix et Rhizoma decoction pieces from different sources were compared and analyzed by using electronic tongue, electronic nose, and gas chromatography-ion mobility spectrometry (GC-IMS). Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA) and Fisher discriminant analysis were employed to identify the origins of Rhei Radix et Rhizoma decoction pieces and establish the basis discrimination criteria. RESULTS The differences in taste of Rhei Radix et Rhizoma decoction pieces from 3 origins were primarily characterized by bitterness, astringency, and bitter-astringent aftertaste. In terms of smell, variations were mainly observed in inorganic sulfides, organic sulfides containing aromatic components, methane and other short-chain alkanes, alcohols, ethers, aldehydes and ketones, as well as nitrogen oxides. Differentially volatile organic compounds mainly consisted of alcohols, aldehydes and ketones. Furthermore, the samples from 8 batches could be effectively classified into 3 categories.Three types of Rhei Radix et Rhizoma decoction pieces can be effectivily identified based on the peak intensity ratio between volatile substances. For example, when the peak intensity of 2-acetylfuran was 3-19 times that of isobutyric acid [dimer], it was considered as Rheum officinale Baill. CONCLUSIONS The discriminant models established in this study, along with the criteria for determining the origins based on the peak intensity ofcharacteristic volatile compounds, can be utilized for the identification of Rhei Radix et Rhizoma decoction pieces.
8.Virulence determinants and genetic diversity of foodborne Yersinia enterocolitica isolated from Wenzhou
Ai-Rong XIE ; Yi LI ; Hui-Huang LOU ; Zhong-Bi XIE ; Le-Yi ZHANG ; Yu-Qin HU ; Yue-Jin WU
Chinese Journal of Zoonoses 2024;40(1):40-45
The aim of this study was to investigate the virulence determinants and genetic diversity of foodborne Yersinia enterocolitica from Wenzhou.A total of 71 strains of Yersinia enterocolitica were isolated from food and foodborne diarrhea ca-ses in Wenzhou,and their biotypes,serotypes,and drug resistance were analyzed.On the basis of whole genome sequencing,we assessed virulence gene profiles,and performed multilocus sequence typing(MLST)and core gene multilocus sequence typ-ing(cgMLST).A total of 94.4%(67/71)of isolates belonged to biotype 1A,and the highest proportion had serotype lA/O∶5(29.6%,21/71).The sensitivity rates of the isolates to 14 antibiotics exceeded 95.8%.A total of 16 categories and 126 viru-lence genes were identified,with two strains carrying the pYV plasmid and chromosome-related virulence genes.ST3(31.6%,12/38)was the most widespread MLST type,and cgMLST analysis revealed no dense clusters of genotypes except for strains sharing the same ST.In conclusion,pathogenic strains were identified from foodborne Yersinia enterocolitica in Wenzhou and were found to exhibit high genetic polymorphism.Enhanced regulatory supervision is essential to prevent the outbreak of food-borne diseases caused by Yersinia enterocolitica.
9.Full-field Anterior Chamber Angle Measurement Based on Optical Reflection Tomography
Bi-Wang LIU ; Jun-Ping ZHONG ; Hai-Na LIN ; Ya-Guang ZENG ; You-Ping YU ; Hong-Yi LI ; Ding-An HAN ; Jin-Ying CHEN
Progress in Biochemistry and Biophysics 2024;51(9):2240-2248
ObjectiveAngle-closure glaucoma (ACG) is one of the major eye-blinding diseases. To diagnose ACG, it is crucial to examine the anterior chamber angle. Current diagnostic tools include slit lamp gonioscopy, water gonioscopy, ultrasound biomicroscopy (UBM), and anterior segment optical coherence tomography (AS-OCT). Slit lamp and water gonioscopy allow convenient observation of the anterior chamber angle, but pose risks of invasive operation and eye infections. UBM can accurately measure the structure of the anterior chamber angle. However, it is complex to operate and unsuitable for patients, who have undergone trauma or ocular surgery. Although AS-OCT provides detailed images, it is costly. The aim of this study is to explore a non-invasive, non-destructive optical reflection tomography (ORT) technique. This technique can achieve low-cost three-dimensional imaging and full-field anterior chamber angle measurement of the porcine eye. MethodsThe experiment involved assembling an optical reflection tomography system, which included a complementary metal oxide semiconductor (CMOS) camera, a telecentric system, a stepper motor, and a white light source, achieving a spatial resolution of approximately 8.5 μm. The process required positioning the porcine eye at the center of the field of the imaging system and rotating it around its central axis using a stepper motor. Reflection projection images were captured at each angle with an exposure time of 1.0 ms and an interval of 2°. The collected reflection-projection data were processed using a filtered reflection tomography algorithm, generating a series of two-dimensional slice data. These slices essentially represented cross-sectional views of the three-dimensional structural image, and were reconstructed into a complete three-dimensional structural image. Based on the reconstructed three-dimensional structural image of the porcine eye, the anterior chamber angles at different positions were measured, and a distribution map of these angles was drawn. Simultaneously, the ORT measurements were compared with the standard results obtained from optical coherence tomography (OCT) to assess the accuracy of ORT measurements. ResultsIn this study, we successfully obtained the reflection projection data of a porcine eye using ORT technology, reconstructed its three-dimensional structural image, and measured the anterior chamber angle, generating the corresponding distribution map. To better distinguish the different structural parts of porcine eye, the three-dimensional structural image was marked with blue, green, and yellow dashed lines from the outer to the inner layers. The area between the blue and green dashed lines corresponded to the sclera. The area between the green and yellow dashed lines corresponded to the iris. The area inside the yellow dashed line corresponded to the pupil. The three-dimensional structural image clearly revealed the key anatomical features of the porcine eye. It was able to measure the anterior chamber angle at different positions. Additionally, the anterior chamber angle measurements of the porcine eye using ORT were compared with the measurements obtained using a TEL320C1 type OCT system, showing an average deviation of 0.51° and a mean square error
10.Rosmarinic acid ameliorates acute liver injury by activating NRF2 and inhibiting ROS/TXNIP/NLRP3 signal pathway
Jun-fu ZHOU ; Xin-yan DAI ; Hui LI ; Yu-juan WANG ; Li-du SHEN ; DU Xiao-bi A ; Shi-ying ZHANG ; Jia-cheng GUO ; Heng-xiu YAN
Acta Pharmaceutica Sinica 2024;59(6):1664-1673
Acute liver injury (ALI) is one of the common severe diseases in clinic, which is characterized by redox imbalance and inflammatory storm. Untimely treatment can easily lead to liver failure and even death. Rosmarinic acid (RA) has been proved to have anti-inflammatory and antioxidant activity, but it is not clear how to protect ALI through antioxidation and inhibition of inflammation. Therefore, this study explored the therapeutic effect and molecular mechanism of RA on ALI through


Result Analysis
Print
Save
E-mail