1.Efficacy comparison of small-incision lenticule extraction and femtosecond assisted laser in situ keratomileusis in the treatment of myopia with astigmatism
Min ZHOU ; Suying YU ; Wanjiang DONG ; Long CHEN ; Miao HE
International Eye Science 2025;25(2):292-296
AIM: To compare the efficacy of small-incision lenticule extraction(SMILE)and femtosecond assisted laser in situ keratomileusis(FS-LASIK)in the treatment of patients with myopia and astigmatism.METHODS: Retrospective analysis. A total of 100 cases(200 eyes)of patients with myopia and astigmatism treated in our hospital from December 2021 to December 2022 were collected. Among them, 50 cases(100 eyes)were divided into SMILE group and 50 cases(100 eyes)were divided into FS-LASIK group according to the treatment plans. The visual acuity and astigmatism, corneal morphology parameters, subjective visual quality scores, ocular surface indicators, postoperative complications, and quality of life were compared between the two groups before and after surgery.RESULTS: There was no significant difference in uncorrected visual acuity(UCVA), best corrected visual acuity(BCVA), astigmatism, corneal asphericity Q value, corneal surface regularity index(SRI), corneal thickness, and corneal curvature between the two groups before surgery and at 1 d, 1, and 6 mo after surgery(all P>0.05). At 1 and 6 mo after surgery, the subjective visual quality score, the quality of life score, Schirmer I test(SⅠt)and tear film break-up time(BUT)in the SMILE group were better than that in the FS-LASIK group(all P<0.05). The incidence of complications in the SMILE group was lower than that in the FS-LASIK group at 6 mo after surgery(P=0.005).CONCLUSION: Both SMILE and FS-LASIK have good clinical effects in the treatment of myopia with astigmatism, but the SMILE could alleviate ocular surface injury, reduce the risk of complications and improve the quality of lifes for patients.
2.Effect of Berberine-Baicalin Combination on Fecal Microbiota Transplantation-induced Type 2 Diabetes Mellitus Due to Internal Accumulation of Dampness-heat in Mice from Perspectives of Gut Microbiota and Metabolomics
Mengjie CHEN ; Yimin LIU ; Yun ZHOU ; Keming YU ; Min XIA ; Hongning LIU ; Yanhua JI ; Zhijun ZENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):52-64
ObjectiveTo investigate the mechanisms by which the combination of berberine (BBR) and baicalin (BAI) ameliorates type 2 diabetes mellitus (T2DM) due to internal accumulation of dampness-heat from the perspectives of gut microbiota and metabolomics. MethodsAntibiotics were used to induce pseudo-sterile mice. Thirty pseudo-sterile mice were randomized into a normal fecal microbiota transplantation group (n=10) and a T2DM (syndrome of internal accumulation of dampness-heat) fecal microbiota transplantation group (n=20). The mice were then administrated with suspensions of fecal microbiota from healthy volunteers and a patient with T2DM due to internal accumulation of dampness-heat by gavage, respectively. Each mouse received 200 µL suspension every other day for a total of 15 times to reshape the gut microbiota. The T2DM model mice were then assigned into a model group (n=8) and a BBR-BAI group (n=11). BBR was administrated at a dose of 200 mg·kg-1, and BAI was administrated in a ratio of BBR-BAI 10∶1 based on preliminary research findings. The administration lasted for 8 consecutive weeks. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin (INS), triglycerides (TG), total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels were measured to evaluate the effects of the BBR-BAI combination on glucose and lipid metabolism and liver function in T2DM mice. Hematoxylin-eosin staining was employed to observe pathological changes in the colon tissue. The expression of claudin-1, zonula occludens-1 (ZO-1), and occludin in the colon tissue was determined by Western blot. Real-time quantitative polymerase chain reaction(Real-time PCR) was employed to assess the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the colon tissue. The fecal microbiota composition and differential metabolites were analyzed by 16S rRNA sequencing and ultra-high performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (UPLC-Q-TOF-MS), respectively. ResultsThe BBR-BAI combination lowered the FBG, HbA1c, and INS levels (P<0.05, P<0.01) and alleviated insulin resistance (P<0.01) in T2DM mice. Additionally, BBR-BAI elevated the levels of ZO-1, occludin, and claudin-1 (P<0.05, P<0.01) and down-regulated the expression levels of TNF-α, IL-1β, and IL-6 in the colon (P<0.05, P<0.01). The results of 16S rRNA sequencing showed that BBR-BAI increased the relative abundance of Ligilactobacillus, Phascolarctobacterium, and Akkermansia (P<0.05), while significantly decreasing the relative abundance of Alistipes, Odoribacter, and Colidextribacter (P<0.05). UPLC-Q-TOF-MS identified 28 differential metabolites, which were primarily involved in arachidonic acid metabolism and α-linolenic acid metabolism. ConclusionBBR-BAI can ameliorate T2DM due to internal accumulation of dampness-heat by modulating the relative abundance of various bacterial genera in the gut microbiota and the expression of fecal metabolites.
3.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
4.Effect of Shenxiong Huanglian Jiedu Decoction on Neuronal Damage and Aβ Clearance in Mice Model of Alzheimer's Disease
Jing LIU ; Kang CHEN ; Yushun ZHOU ; Zhezuo ZHANG ; Guran YU ; Hao LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):43-52
ObjectiveTo investigate the effects of Shenxiong Huanglian Jiedu decoction on the clearance of amyloid β-protein (Aβ) and neuronal damage in the mouse model of Alzheimer's disease (AD). MethodsA total of 36 SPF-grade 2-month-old C57BL/6J mice were used in this study, and the modeling was performed by bilateral hippocampal injection of Aβ oligomers in C57BL/6J mice. The experiment was conducted with a blank group, a sham operation group, a model group, low- and high-dose (3.27,6.54 g·kg-1, respectively) Shenxiong Huanglian Jiedu decoction groups, and a positive control (donepezil hydrochloride, 0.65 mg·kg-1) group. At the end of the drug intervention, the learning and memory abilities and the activities of mice were evaluated by the Morris water maze and open field tests. Brain histopathology was examined by hematoxylin-eosin and Nissl staining. Additionally, in vivo imaging was employed to measure the metabolism of fluorescent Aβ in the cerebrospinal fluid, and staining of ionized calcium-binding adapter molecule-1 (Iba-1) was employed to assess microglial activation in the hippocampal tissue. Additionally, neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) levels in the brain tissue and serum were determined by the immunofluorescence assay and enzyme-linked immunosorbent assay. Western blot was conducted to determine the expression of inflammation and pathway-related proteins in the hippocampal tissue. ResultsCompared with the blank group and the sham operation group, the escape latency of the mice in the model group was prolonged, the platform residence time was shortened, the hippocampal tissue showed pathological manifestations such as neuronal pyknosis, Nissl body dissolution, and microglia activation. The metabolic rate of fluorescent Aβ through cerebrospinal fluid was slowed down, and the expression levels of BDNF, NT-3, and interleukin-10 (IL-10) in the hippocampus were significantly decreased (P<0.01). The expression levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and phosphorylated nuclear transcription factor-κB (p-NF-κB p65) in hippocampus were significantly increased (P<0.05, P<0.01). Compared with the model group, the escape latency of mice in the low and high dose groups of Chinese medicine and donepezil group was shortened, and the platform residence time was prolonged. Neuronal karyopyknosis, Nissl body dissolution and microglia activation in hippocampus were improved. Fluorescence Aβ was metabolized faster by cerebrospinal fluid. The expression of BDNF and NT-3 in hippocampus was increased (P<0.01), and the expression of TLR4, MyD88 and p-NF-κB p65 was significantly decreased (P<0.05, P<0.01). The expression of TNF-α in the hippocampus of the high-dose group was significantly decreased (P<0.05), and the expression of IL-10 was significantly increased (P<0.05). The expression of TNF-α, IL-6 and IL-1β in the hippocampus of the donepezil group was significantly decreased (P<0.05, P<0.01). ConclusionShenxiong Huanglian Jiedu decoction may mitigate neuronal damage and enhance cerebrospinal fluid flow in the mouse model of AD, thereby promoting the clearance of Aβ and improving the learning and memory abilities. These beneficial effects are likely mediated through the inhibition of microglial activation, reduction of inflammation, and modulation of the TLR4/MyD88/NF-κB signaling pathway.
5.Effect of Shenxiong Huanglian Jiedu Decoction on Neuronal Damage and Aβ Clearance in Mice Model of Alzheimer's Disease
Jing LIU ; Kang CHEN ; Yushun ZHOU ; Zhezuo ZHANG ; Guran YU ; Hao LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):43-52
ObjectiveTo investigate the effects of Shenxiong Huanglian Jiedu decoction on the clearance of amyloid β-protein (Aβ) and neuronal damage in the mouse model of Alzheimer's disease (AD). MethodsA total of 36 SPF-grade 2-month-old C57BL/6J mice were used in this study, and the modeling was performed by bilateral hippocampal injection of Aβ oligomers in C57BL/6J mice. The experiment was conducted with a blank group, a sham operation group, a model group, low- and high-dose (3.27,6.54 g·kg-1, respectively) Shenxiong Huanglian Jiedu decoction groups, and a positive control (donepezil hydrochloride, 0.65 mg·kg-1) group. At the end of the drug intervention, the learning and memory abilities and the activities of mice were evaluated by the Morris water maze and open field tests. Brain histopathology was examined by hematoxylin-eosin and Nissl staining. Additionally, in vivo imaging was employed to measure the metabolism of fluorescent Aβ in the cerebrospinal fluid, and staining of ionized calcium-binding adapter molecule-1 (Iba-1) was employed to assess microglial activation in the hippocampal tissue. Additionally, neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) levels in the brain tissue and serum were determined by the immunofluorescence assay and enzyme-linked immunosorbent assay. Western blot was conducted to determine the expression of inflammation and pathway-related proteins in the hippocampal tissue. ResultsCompared with the blank group and the sham operation group, the escape latency of the mice in the model group was prolonged, the platform residence time was shortened, the hippocampal tissue showed pathological manifestations such as neuronal pyknosis, Nissl body dissolution, and microglia activation. The metabolic rate of fluorescent Aβ through cerebrospinal fluid was slowed down, and the expression levels of BDNF, NT-3, and interleukin-10 (IL-10) in the hippocampus were significantly decreased (P<0.01). The expression levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and phosphorylated nuclear transcription factor-κB (p-NF-κB p65) in hippocampus were significantly increased (P<0.05, P<0.01). Compared with the model group, the escape latency of mice in the low and high dose groups of Chinese medicine and donepezil group was shortened, and the platform residence time was prolonged. Neuronal karyopyknosis, Nissl body dissolution and microglia activation in hippocampus were improved. Fluorescence Aβ was metabolized faster by cerebrospinal fluid. The expression of BDNF and NT-3 in hippocampus was increased (P<0.01), and the expression of TLR4, MyD88 and p-NF-κB p65 was significantly decreased (P<0.05, P<0.01). The expression of TNF-α in the hippocampus of the high-dose group was significantly decreased (P<0.05), and the expression of IL-10 was significantly increased (P<0.05). The expression of TNF-α, IL-6 and IL-1β in the hippocampus of the donepezil group was significantly decreased (P<0.05, P<0.01). ConclusionShenxiong Huanglian Jiedu decoction may mitigate neuronal damage and enhance cerebrospinal fluid flow in the mouse model of AD, thereby promoting the clearance of Aβ and improving the learning and memory abilities. These beneficial effects are likely mediated through the inhibition of microglial activation, reduction of inflammation, and modulation of the TLR4/MyD88/NF-κB signaling pathway.
6.Study on the influential factors of blood concentration for duloxetine based on therapeutic drug monitoring
Yang LUN ; Liguang DUAN ; Feiyue AN ; Ran FU ; Jing YU ; Chaoli CHEN ; Mengqiang ZHAO ; Shi SU ; Yang SONG ; Jiaqi WANG ; Yuhang YAN ; Chunhua ZHOU
China Pharmacy 2025;36(6):727-731
OBJECTIVE To explore the main factors influencing the blood concentration of duloxetine, and provide a scientific basis for the individualized use of duloxetine. METHODS Retrospective analysis was conducted on 434 inpatients with depressive disorders at the First Hospital of Hebei Medical University, who were treated with duloxetine and underwent blood concentration monitoring between January 2022 and April 2024. The study examined the impact of various factors, including gender, age, body mass index (BMI), gene phenotypes, combined medication, drug type (original/generic), and genotyping results of gene single nucleotide polymorphism loci, on blood concentration and the concentration-to-dose (C/D) after dose adjustment. RESULTS The blood concentration of duloxetine was 76.65 (45.57, 130.31) ng/mL, and C/D was 0.96 (0.63, 1.60) ng·d/(mL·mg). The blood concentration of duloxetine was positively correlated with the daily dose of administration (R2=0.253 7, P<0.001). Blood concentration of duloxetine in 38.94% of patients exceeded the recommended range specified in the guidelines. Gender, age, BMI, combined use of CYP2D6 enzyme inhibitors, and CYP2D6 and CYP1A2 phenotypes had significant effects on C/D of duloxetine (P<0.05). CONCLUSIONS The patient’s age, gender, BMI, combined medication, and genetic phenotypes are closely related to the blood concentration of duloxetine.
7.Influencing factors of neonatal red blood cell transfusion: a retrospective analysis
Na ZHOU ; Xin HE ; Yu SI ; Chen HOU ; Jialu CHEN ; Zhaohui TANG
Chinese Journal of Blood Transfusion 2025;38(3):375-381
[Objective] To analyze the effects of different factors and red blood cell transfusion thresholds on the efficacy of neonatal red blood cell (RBC) transfusion, in order to provide more references for neonatal transfusions to better achieve rational and effective blood use. [Methods] A retrospective collection of data from 282 neonates who received RBC transfusions at our hospital from 2022 to 2023 was conducted, including birth weight, gestational age, number of blood transfusions, length of hospital stay, assisted ventilation during RBC transfusion, and laboratory test results before and after transfusion. SPSS software was used for statistical analysis to comprehensively analyze the impact of different factors on the efficacy of RBC transfusion in neonates. [Results] The results showed that the gestational age and weight of newborns at birth were negatively correlated with their length of hospital stay and the number of RBC transfusions during hospitalization. Newborns with younger gestational age and lower weight had longer hospital stays and more RBC transfusions during hospitalization. After administering RBCs according to the standard of 15 mL/kg, there was a statistically significant difference in the efficacy of RBC transfusion at different transfusion thresholds. In non-critical situations, RBC transfusions were ineffective when the pre-transfusion hemoglobin (Hb) level was >120 g/L. When the pre-transfusion Hb level was ≤70 g/L, RBC transfusions achieved higher efficacy in both critical and non-critical situations. [Conclusion] In critical situations, the group with pre-transfusion Hb values ≤ 70 g/L has the best RBC transfusion effect, while in non-critical situations, the group with pre-transfusion Hb levels between 81 and 90 g/L has the best RBC transfusion effect. Overall, the efficacy of RBC transfusion in non-critical situations is higher than that in critical situations.
8.Constructing a model of degenerative scoliosis using finite element method:biomechanical analysis in etiology and treatment
Kai HE ; Wenhua XING ; Shengxiang LIU ; Xianming BAI ; Chen ZHOU ; Xu GAO ; Yu QIAO ; Qiang HE ; Zhiyu GAO ; Zhen GUO ; Aruhan BAO ; Chade LI
Chinese Journal of Tissue Engineering Research 2025;29(3):572-578
BACKGROUND:Degenerative scoliosis is defined as a condition that occurs in adulthood with a coronal cobb angle of the spine>10° accompanied by sagittal deformity and rotational subluxation,which often produces symptoms of spinal cord and nerve compression,such as lumbar pain,lower limb pain,numbness,weakness,and neurogenic claudication.The finite element method is a mechanical analysis technique for computer modelling,which can be used for spinal mechanics research by building digital models that can realistically restore the human spine model and design modifications. OBJECTIVE:To review the application of finite element method in the etiology and treatment of degenerative scoliosis. METHODS:The literature databases CNKI,PubMed,and Web of Science were searched for articles on the application of finite element method in degenerative scoliosis published before October 2023.Search terms were"finite element analysis,biomechanics,stress analysis,degenerative scoliosis,adult spinal deformity"in Chinese and English.Fifty-four papers were finally included. RESULTS AND CONCLUSION:(1)The biomechanical findings from the degenerative scoliosis model constructed using the finite element method were identical to those from the in vivo experimental studies,which proves that the finite element method has a high practical value in degenerative scoliosis.(2)The study of the etiology and treatment of degenerative scoliosis by the finite element method is conducive to the prevention of the occurrence of the scoliosis,slowing down the progress of the scoliosis,the development of a more appropriate treatment plan,the reduction of complications,and the promotion of the patients'surgical operation.(3)The finite element method has gradually evolved from a single bony structure to the inclusion of soft tissues such as muscle ligaments,and the small sample content is increasingly unable to meet the research needs.(4)The finite element method has much room for exploration in degenerative scoliosis.
9.Effect of The Hydrophilic Amino Acids on Self-assembly Behavior of Short Bola-like Peptides
Xin-Xin GAO ; Yu HAN ; Yi-Lin ZHOU ; Xi-Ya CHEN ; Yu-Rong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1290-1301
ObjectiveBola-like short peptides exhibit novel self-assembly properties due to the formation of peptide dimers via hydrogen bonding interactions between their C-terminals. In this configuration, hydrophilic amino acids are distributed at both terminals, making these peptides behave similarly to Bola peptides. The electrostatic repulsive interactions arising from the hydrophilic amino acids at each terminal can be neutralized, thereby greatly promoting the lateral association of β-sheets. Consequently, assemblies with significantly larger widths are typically the dominant nanostructures for Bola-like peptides. To investigate the effect of hydrophilic amino acids on the self-assembly behavior of Bola-like peptides, the peptides Ac-RI3-CONH2 and Ac-HI3-CONH2 were designed and synthesized using the Bola-like peptide Ac-KI3-CONH2 as a template. Their self-assembly behavior was systematically examined. MethodsAtomic force microscopy (AFM) and transmission electron microscopy (TEM) were employed to characterize the morphology and size of the assemblies. The secondary structures of the assemblies were analyzed using circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Small-angle neutron scattering (SANS) was used to obtain detailed structural information at a short-length scale. Based on these experimental results, the effects of hydrophilic amino acids on the self-assembly behavior of Bola-like short peptides were systematically analyzed, and the underlying formation mechanism was explored. ResultsThe aggregation process primarily involved three steps. First, peptide dimers were formed through hydrogen bonding interactions between their C-terminals. Within these dimers, the hydrophilic amino acids K, R, and H were positioned at both terminals, enabling the peptides to self-assemble in a manner similar to Bola peptides. Next, β-sheets were formed via hydrogen bonding interactions along the peptide backbone. Finally, self-assemblies were generated through the lateral association of β-sheets. The results demonstrated that both Ac-KI3-CONH2 and Ac-RI3-CONH2 could self-assemble into double-layer nanotubes with diameters of approximately 200 nm. These nanotubes were formed by the edge fusion of helical ribbons, which initially emerged from twisted ribbons. Notably, the primary assemblies of these peptides exhibited opposite chirality: nanofibers formed by Ac-KI3-CONH2 displayed left-handed chirality, whereas those formed by Ac-RI3-CONH2 exhibited right-handed chirality. This reversal in torsional direction was primarily attributed to the different abilities of K and R to form hydrogen bonds with water. In contrast, Ac-HI3-CONH2 formed narrower twisted ribbons with a significantly reduced width of approximately 30 nm, which was attributed to the strong steric hindrance caused by the imidazole rings. The multilayer height of these ribbons was mainly due to the unique structure of the imidazole rings, which can function as both hydrogen bond donors and acceptors, thereby promoting aggregate growth in the vertical direction. ConclusionThe final morphology of the self-assemblies resulted from a delicate balance of various non-covalent interactions. By altering the types of hydrophilic amino acid residues in Bola-like short peptides, the relative strength of non-covalent interactions that drive assembly formation can be effectively regulated, allowing precise control over the morphology and chirality of the assemblies. This study provides a simple and effective approach for constructing diverse self-assemblies and lays a theoretical foundation for the development of functional biomaterials.
10.Phase Change and Quantity-quality Transfer Analysis of Medicinal Materials, Decoction Pieces and Standard Decoction of Haliotidis Concha (Haliotis discus hannai)
Zhihan YANG ; Jingwei ZHOU ; Weichao WANG ; Yu HUANG ; Chuang LUO ; Lian YANG ; Chenyu ZHONG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):206-214
ObjectiveTo explore the quantity-quality transfer process of medicinal materials, decoction pieces and standard decoction of Haliotidis Concha(Haliotis discus hannai) by analyzing the physical phase and compositional changes, so as to provide references for the effective control of its quality. MethodsA total of 20 batches of Haliotidis Concha(H. discus hannai) from different habitats were collected and prepared into corresponding calcined products and standard decoction, and the content of CaCO3 of the three samples were determined and the extract yield and transfer rate of CaCO3 were calculated. The changes in elemental composition and their relative contents were investigated by X-ray fluorescence spectrometry(XRF), X-ray diffraction(XRD) was used to study the changes in the phase compositions of the three samples and to establish their respective XRD specific chromatogram. Fourier transform infrared spectrometry(FTIR) was used to study the changes in the chemical composition and content changes of the three samples and to establish their respective FTIR specific chromatogram, while combining hierarchical cluster analysis(HCA), principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) to find the common and differential characteristics, in order to explore the quantity-quality transfer relationship in the preparation process of standard decoction of Haliotidis Concha(H. discus hannai). ResultsThe CaCO3 contents of the 20 batches of medicinal materials, decoction pieces and standard decoction of Haliotidis Concha(H. discus hannai) were 93.87%-98.95%, 96.02%-99.97% and 38.29%-51.96%, respectively, and the extract yield of standard decoction was 1.71%-2.37%, and the CaCO3 transfer rate of decoction pieces-standard decoction was 0.68%-1.27%. XRF results showed that the elemental species and their relative contents contained in Haliotidis Concha and its calcined products had a high degree of similarity, and although there was no obvious difference in the elemental species contained in decoction pieces and standard decoction, the difference in the relative contents was obvious, which was mainly reflected in the decrease of the relative content of element Ca and the increase of the relative content of element Na. XRD results showed that Haliotidis Concha mainly contained CaCO3 of aragonite and calcite, while calcined Haliotidis Concha only contained CaCO3 of calcite, and standard decoction mainly contained CaCO3 of calcite and Na2CO3 of natrite. FTIR results showed that there were internal vibrations of O-H, C-H, C=O, HCO3- and CO32- groups in Haliotidis Concha, while O-H, HCO3- and CO32- groups existed in the calcined products and standard decoction. ConclusionThe changes of Haliotidis Concha and calcined Haliotidis Concha are mainly the increase of CaCO3 content, the transformation of CaCO3 aragonite crystal form to calcite crystal form and the absence of organic components after calcination, and the changes of calcined products and standard decoction are mainly the decrease of CaCO3 content and the increase of Na2CO3 relative content. The method established in the study is applicable to the quality control of the shellfish medicines-decoction pieces- standard decoction, which provides a new idea for the study of quality control of dispensing granules of shellfish medicines.

Result Analysis
Print
Save
E-mail