1.Simultaneous TAVI and McKeown for esophageal cancer with severe aortic regurgitation: A case report
Liang CHENG ; Lulu LIU ; Xin XIAO ; Lin LIN ; Mei YANG ; Jingxiu FAN ; Hai YU ; Longqi CHEN ; Yingqiang GUO ; Yong YUAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):277-280
A 71-year-old male presented with esophageal cancer and severe aortic valve regurgitation. Treatment strategies for such patients are controversial. Considering the risks of cardiopulmonary bypass and potential esophageal cancer metastasis, we successfully performed transcatheter aortic valve implantation and minimally invasive three-incision thoracolaparoscopy combined with radical resection of esophageal cancer (McKeown) simultaneously in the elderly patient who did not require neoadjuvant treatment. This dual minimally invasive procedure took 6 hours and the patient recovered smoothly without any surgical complications.
2.Changes in renal function in chronic hepatitis B patients treated initially with entecavir versus tenofovir alafenamide fumarate and related influencing factors
Shipeng MA ; Yanqing YU ; Xiaoping WU ; Liang WANG ; Liping LIU ; Yuliang ZHANG ; Xin WAN ; Shanfei GE
Journal of Clinical Hepatology 2025;41(1):44-51
ObjectiveTo investigate the influence of entecavir (ETV) versus tenofovir alafenamide fumarate (TAF) on renal function in previously untreated patients with chronic hepatitis B (CHB). MethodsA retrospective analysis was performed for the clinical data of 167 previously untreated CHB patients who received ETV or TAF treatment for at least 48 weeks at the outpatient service of Department of Infectious Diseases in The First Affiliated Hospital of Nanchang University from September 2019 to November 2023, and according to the antiviral drug used, they were divided into ETV group with 117 patients and TAF group with 50 patients. In order to balance baseline clinical data, propensity score matching (PSM) was used for matching and analysis at a ratio of 2∶1, and the two groups were compared in terms of estimated glomerular filtration rate (eGFR) and the incidence rate of abnormal renal function at week 48. According to eGFR at week 48, the patients were divided into normal renal function group and abnormal renal function group. The independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between two groups, and the chi-square test or the Fisher’s exact test was used for comparison of categorical data between two groups. The multivariate Logistic regression analysis was used to investigate the influencing factors for abnormal renal function, and the receiver operating characteristic (ROC) curve was used to assess the performance of each indicator in predicting abnormal renal function. The Kaplan-Meier method was used to analyze the cumulative incidence rate of abnormal renal function, and the log-rank test was used for comparison. The analysis of variance with repeated measures was used to compare the dynamic changes of eGFR during antiviral therapy in CHB patients. ResultsAfter PSM matching, there were 100 patients in the ETV group and 50 patients in the TAF group. There were no significant differences in baseline clinical data between the ETV group and the TAF group (all P>0.05), with an eGFR level of 112.29±9.92 mL/min/1.73 m2 in the ETV group and 114.72±12.15 mL/min/1.73 m2 in the TAF group. There was a reduction in eGFR from baseline to week 48 in both groups, and compared with the TAF group at week 48, the ETV group had a significantly lower eGFR (106.42±14.12 mL/min/1.73 m2 vs 112.25±13.44 mL/min/1.73 m2, t=-2.422, P=0.017) and a significantly higher incidence rate of abnormal renal function (17.00% vs 4.00%, χ2=5.092, P=0.024). After the patients were divided into normal renal function group with 131 patients and abnormal renal function group with 19 patients, the univariate analysis showed that there were significant differences between the two groups in age (Z=-2.039, P=0.041), treatment drug (ETV/TAF) (χ2=5.092, P=0.024), and baseline eGFR level (t=4.023, P<0.001), and the multivariate Logistic regression analysis showed that baseline eGFR (odds ratio [OR]=0.896, 95% confidence interval [CI]: 0.841 — 0.955, P<0.001) and treatment drug (OR=5.589, 95%CI: 1.136 — 27.492, P=0.034) were independent influencing factors for abnormal renal function. Baseline eGFR had an area under the ROC curve of 0.781 in predicting abnormal renal function in CHB patients, with a cut-off value of 105.24 mL/min/1.73 m2, a sensitivity of 73.68%, and a specificity of 82.44%. The Kaplan-Meier curve analysis showed that the patients with baseline eGFR≤105.24 mL/min/1.73 m2 had a significantly higher cumulative incidence rate of abnormal renal function than those with baseline eGFR>105.24 mL/min/1.73 m2 (χ2=22.330, P<0.001), and the ETV group had a significantly higher cumulative incidence rate of abnormal renal function than the TAF group (χ2=4.961, P=0.026). With the initiation of antiviral therapy, both the ETV group and the TAF group had a significant reduction in eGFR (F=5.259, P<0.001), but the ETV group only had a significant lower level of eGFR than the TAF group at week 48 (t=-2.422, P=0.017); both the baseline eGFR≤105.24 mL/min/1.73 m2 group and the baseline eGFR>105.24 mL/min/1.73 m2 group had a significant reduction in eGFR (F=5.712, P<0.001), and there was a significant difference in eGFR between the two groups at baseline and weeks 12, 24, 36, and 48 (t=-13.927, -9.780, -8.835, -9.489, and -8.953, all P<0.001). ConclusionFor CHB patients initially treated with ETV or TAF, ETV antiviral therapy has a higher risk of renal injury than TAF therapy at week 48.
3.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy.
4.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
5.Optimization of Ovarian Tissue Vitrification Using Hydrogel Encapsulation and Magnetic Induction Nanowarming
Yu-Kun CAO ; Na YE ; Zheng LI ; Xin-Li ZHOU
Progress in Biochemistry and Biophysics 2025;52(2):464-477
ObjectiveFor prepubertal and urgently treated malignant tumor patients, ovarian tissue cryopreservation and transplantation represent more appropriate fertility preservation methods. Current clinical practices often involve freezing ovarian tissue with high concentrations of cryoprotectants (CPAs) and thawing with water baths. These processes lead to varying degrees of toxicity and devitrification damage to ovarian tissue. Therefore, this paper proposes optimized methods for vitrification of ovarian tissues based on sodium alginate hydrogel encapsulation and magnetic induction nanowarming technology. MethodsFirstly, the study investigated the effects of sodium alginate concentration, the sequence of hydrogel encapsulation and CPAs loading on vitrification efficiency of encapsulated ovarian tissue. Additionally, the capability of sodium alginate hydrogel encapsulation to reduce the required concentration of CPAs was validated. Secondly, a platform combining water bath and magnetic induction nanowarming was established to rewarm ovarian tissue under various concentrations of magnetic nanoparticles and magnetic field strengths. The post-warming follicle survival rate, antioxidant capacity, and ovarian tissue integrity were evaluated to assess the efficacy of the method. ResultsThe study found that ovarian tissue encapsulated with 2% sodium alginate hydrogel exhibited the highest follicle survival rate after vitrification. The method of loading CPAs prior to encapsulation proved more suitable for ovarian tissue cryopreservation, effectively reducing the required concentration of CPAs by 50%. A combination of 8 g/L Fe3O4 nanoparticles and an alternating magnetic field of 300 Gs showed optimal warming effectiveness for ovarian tissue. Combining water bath rewarming with magnetic induction nanowarming yielded the highest follicle survival rate, enhanced antioxidant capacity, and preserved tissue morphology. ConclusionSodium alginate hydrogel encapsulation of ovarian tissue reduces the concentration of CPAs required during the freezing process. The combination of magnetic induction nanowarming with water bath provides an efficient method ovarian tissue rewarming. This study offers novel approaches to optimize ovarian tissues vitrification.
6.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
7.Network pharmacology-based mechanism of combined leech and bear bile on hepatobiliary diseases
Chen GAO ; Yu-shi GUO ; Xin-yi GUO ; Ling-zhi ZHANG ; Guo-hua YANG ; Yu-sheng YANG ; Tao MA ; Hua SUN
Acta Pharmaceutica Sinica 2025;60(1):105-116
In order to explore the possible role and molecular mechanism of the combined action of leech and bear bile in liver and gallbladder diseases, this study first used network pharmacology methods to screen the components and targets of leech and bear bile, as well as the related target genes of liver and gallbladder diseases. The selected key genes were subjected to interaction network and GO/KEGG enrichment analysis. Then, using sodium oleate induced HepG2 cell lipid deposition model and
8.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
9.Influencing factors of neonatal red blood cell transfusion: a retrospective analysis
Na ZHOU ; Xin HE ; Yu SI ; Chen HOU ; Jialu CHEN ; Zhaohui TANG
Chinese Journal of Blood Transfusion 2025;38(3):375-381
[Objective] To analyze the effects of different factors and red blood cell transfusion thresholds on the efficacy of neonatal red blood cell (RBC) transfusion, in order to provide more references for neonatal transfusions to better achieve rational and effective blood use. [Methods] A retrospective collection of data from 282 neonates who received RBC transfusions at our hospital from 2022 to 2023 was conducted, including birth weight, gestational age, number of blood transfusions, length of hospital stay, assisted ventilation during RBC transfusion, and laboratory test results before and after transfusion. SPSS software was used for statistical analysis to comprehensively analyze the impact of different factors on the efficacy of RBC transfusion in neonates. [Results] The results showed that the gestational age and weight of newborns at birth were negatively correlated with their length of hospital stay and the number of RBC transfusions during hospitalization. Newborns with younger gestational age and lower weight had longer hospital stays and more RBC transfusions during hospitalization. After administering RBCs according to the standard of 15 mL/kg, there was a statistically significant difference in the efficacy of RBC transfusion at different transfusion thresholds. In non-critical situations, RBC transfusions were ineffective when the pre-transfusion hemoglobin (Hb) level was >120 g/L. When the pre-transfusion Hb level was ≤70 g/L, RBC transfusions achieved higher efficacy in both critical and non-critical situations. [Conclusion] In critical situations, the group with pre-transfusion Hb values ≤ 70 g/L has the best RBC transfusion effect, while in non-critical situations, the group with pre-transfusion Hb levels between 81 and 90 g/L has the best RBC transfusion effect. Overall, the efficacy of RBC transfusion in non-critical situations is higher than that in critical situations.
10.Effect of intracellular and extracellular vesicles derived from periodontal ligament stem cells on the osteogenic differentiation ability of periodontal ligament stem cells under an inflammatory microenvironment
LIU Haotian ; YAN Fuhua ; WU Yu ; TONG Xin ; ZHANG Qian
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(4):268-277
Objective:
To examine the effect of intracellular vesicles (IVs) and extracellular vesicles (EVs) that originated from periodontal ligament stem cells (PDLSCs) on the osteogenic differentiation of PDLSCs within a lipopolysaccharide (LPS)-simulated inflammatory microenvironment, and to provide new insights for the application of IVs in the repair and regeneration of periodontal tissue in periodontitis.
Methods:
Ethical approval was obtained from the institution. Human-origin PDLSCs were extracted, and the IVs and EVs from PDLSCs at the 3rd-6th passages were gathered and identified using transmission electron microscopy, nano flow cytometry (Nano FCM) analysis, and Western Blot. The 3rd-6th generations of PDLSCs were categorized into the following groups: Control group, LPS group, LPS + 100 μg/mL EVs group (LPS+EVs group), and LPS + 100 μg/mL IVs group (LPS+IVs group). The effects of the IVs and EVs on the anti-inflammatory and osteogenic differentiation of PDLSCs in an inflammatory microenvironment were assessed by using a Cell Counting Kit-8 (CCK-8), enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), Western Blot, alkaline phosphatase (ALP) staining, and alizarin red staining (ARS).
Results:
Under transmission electron microscopy, the IVs and EVs derived from PDLSCs displayed a double-layer membrane structure. NanoFCM analysis revealed that the average diameters of the IVs and EVs were 79.6 nm and 82.1 nm, respectively. Western Blot analysis indicated that the surface proteins CD9, CD63, and CD81 of the IVs and EVs were positively expressed, while calnexin was negatively expressed, indicating that IVs and EVs were successfully obtained. Compared with the Control group, the proliferation of PDLSCs in the LPS group was reduced, while the levels of inflammatory cytokine interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the cell supernatant were increased, the mRNA expressions of osteogenic differentiation-related genes, including osteoblast-related genes runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN) of PDLSCs were reduced, the protein expressions of RUNX2 and osteopontin (OPN) were also decreased (P<0.05); compared with the LPS group, the proliferation of PDLSCs in the LPS+EVs group and LPS+IVs group were significantly increased, while the levels of IL-6, TNF-α were significantly reduced, and the mRNA expressions of RUNX2, ALP, OCN were significantly increased, the protein expressions of RUNX2 and OPN were also significantly increased (P<0.05). Further, in the inflammatory microenvironment, Compared with EVs, IVs more significantly promote the proliferation of PDLSCs, inhibit TNF-α expression, enhance the expression of RUNX2 mRNA, upregulate the expression of RUNX2 and OPN proteins, increase ALP activity, and promote the formation of mineralized nodules (P<0.05).
Conclusion
IVs and EVs derived from PDLSCs can boost the proliferation of PDLSCs in an inflammatory microenvironment, inhibit the expression of inflammatory factors, and advance the osteogenic differentiation of PDLSCs. The anti-inflammatory and osteogenic effects of IVs are superior to those of EVs.


Result Analysis
Print
Save
E-mail