1.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
2.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
3.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
4.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
5.Inhibition of Sodium-Glucose Cotransporter-2 during Serum Deprivation Increases Hepatic Gluconeogenesis via the AMPK/AKT/FOXO Signaling Pathway
Jinmi LEE ; Seok-Woo HONG ; Min-Jeong KIM ; Yu-Mi LIM ; Sun Joon MOON ; Hyemi KWON ; Se Eun PARK ; Eun-Jung RHEE ; Won-Young LEE
Endocrinology and Metabolism 2024;39(1):98-108
Background:
Sodium-dependent glucose cotransporter 2 (SGLT2) mediates glucose reabsorption in the renal proximal tubules, and SGLT2 inhibitors are used as therapeutic agents for treating type 2 diabetes mellitus. This study aimed to elucidate the effects and mechanisms of SGLT2 inhibition on hepatic glucose metabolism in both serum deprivation and serum supplementation states.
Methods:
Huh7 cells were treated with the SGLT2 inhibitors empagliflozin and dapagliflozin to examine the effect of SGLT2 on hepatic glucose uptake. To examine the modulation of glucose metabolism by SGLT2 inhibition under serum deprivation and serum supplementation conditions, HepG2 cells were transfected with SGLT2 small interfering RNA (siRNA), cultured in serum-free Dulbecco’s modified Eagle’s medium for 16 hours, and then cultured in media supplemented with or without 10% fetal bovine serum for 8 hours.
Results:
SGLT2 inhibitors dose-dependently decreased hepatic glucose uptake. Serum deprivation increased the expression levels of the gluconeogenesis genes peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), glucose 6-phosphatase (G6pase), and phosphoenolpyruvate carboxykinase (PEPCK), and their expression levels during serum deprivation were further increased in cells transfected with SGLT2 siRNA. SGLT2 inhibition by siRNA during serum deprivation induces nuclear localization of the transcription factor forkhead box class O 1 (FOXO1), decreases nuclear phosphorylated-AKT (p-AKT), and p-FOXO1 protein expression, and increases phosphorylated-adenosine monophosphate-activated protein kinase (p-AMPK) protein expression. However, treatment with the AMPK inhibitor, compound C, reversed the reduction in the protein expression levels of nuclear p- AKT and p-FOXO1 and decreased the protein expression levels of p-AMPK and PEPCK in cells transfected with SGLT2 siRNA during serum deprivation.
Conclusion
These data show that SGLT2 mediates glucose uptake in hepatocytes and that SGLT2 inhibition during serum deprivation increases gluconeogenesis via the AMPK/AKT/FOXO1 signaling pathway.
6.Clinical Characteristics and Risk Factors for Mortality in Critical Coronavirus Disease 2019 Patients 50 Years of Age or Younger During the Delta Wave: Comparison With Patients > 50 Years in Korea
Hye Jin SHI ; Eliel NHAM ; Bomi KIM ; Eun-Jeong JOO ; Hae Suk CHEONG ; Shin Hee HONG ; Miri HYUN ; Hyun ah KIM ; Sukbin JANG ; Ji-Young RHEE ; Jungok KIM ; Sungmin KIM ; Hyun Kyu CHO ; Yu Mi WI ; Shinhye CHEON ; Yeon-Sook KIM ; Seungjin LIM ; Hyeri SEOK ; Sook In JUNG ; Joong Sik EOM ; Kyong Ran PECK
Journal of Korean Medical Science 2022;37(22):e175-
Background:
Numerous patients around the globe are dying from coronavirus disease 2019 (COVID-19). While age is a known risk factor, risk analysis in the young generation is lacking. The present study aimed to evaluate the clinical features and mortality risk factors in younger patients (≤ 50 years) with a critical case of COVID-19 in comparison with those among older patients (> 50 years) in Korea.
Methods:
We analyzed the data of adult patients only in critical condition (requiring high flow nasal cannula oxygen therapy or higher respiratory support) hospitalized with PCR-confirmed COVID-19 at 11 hospitals in Korea from July 1, 2021 to November 30, 2021 when the delta variant was a dominant strain. Patients’ electronic medical records were reviewed to identify clinical characteristics.
Results:
During the study period, 448 patients were enrolled. One hundred and forty-two were aged 50 years or younger (the younger group), while 306 were above 50 years of age (the older group). The most common pre-existing conditions in the younger group were diabetes mellitus and hypertension, and 69.7% of the patients had a body mass index (BMI) > 25 kg/m 2 .Of 142 younger patients, 31 of 142 patients (21.8%, 19 women) did not have these pre-existing conditions. The overall case fatality rate among severity cases was 21.0%, and it differed according to age: 5.6% (n = 8/142) in the younger group, 28.1% in the older group, and 38% in the ≥ 65 years group. Age (odds ratio [OR], 7.902; 95% confidence interval [CI], 2.754–18.181), mechanical ventilation therapy (OR, 17.233; 95% CI, 8.439–35.192), highest creatinine > 1.5 mg/dL (OR, 17.631; 95% CI, 8.321–37.357), and combined blood stream infection (OR, 7.092;95% CI, 1.061–18.181) were identified as independent predictors of mortality in total patients.Similar patterns were observed in age-specific analyses, but most results were statistically insignificant in multivariate analysis due to the low number of deaths in the younger group.The full vaccination rate was very low among study population (13.6%), and only three patients were fully vaccinated, with none of the patients who died having been fully vaccinated in the younger group. Seven of eight patients who died had a pre-existing condition or were obese (BMI > 25 kg/m 2 ), and the one remaining patient died from a secondary infection.
Conclusion
About 22% of the patients in the young critical group did not have an underlying disease or obesity, but the rate of obesity (BMI > 25 kg/m2 ) was high, with a fatality rate of 5.6%. The full vaccination rate was extremely low compared to the general population of the same age group, showing that non-vaccination has a grave impact on the progression of COVID-19 to a critical condition. The findings of this study highlight the need for measures to prevent critical progression of COVID-19, such as vaccinations and targeting young adults especially having risk factors.
7.Importation and Transmission of SARS-CoV-2 B.1.1.529 (Omicron) Variant of Concern in Korea, November 2021
Ji Joo LEE ; Young June CHOE ; Hyeongseop JEONG ; Moonsu KIM ; Seonggon KIM ; Hanna YOO ; Kunhee PARK ; Chanhee KIM ; Sojin CHOI ; JiWoo SIM ; Yoojin PARK ; In Sil HUH ; Gasil HONG ; Mi Young KIM ; Jin Su SONG ; Jihee LEE ; Eun-Jin KIM ; Jee Eun RHEE ; Il-Hwan KIM ; Jin GWACK ; Jungyeon KIM ; Jin-Hwan JEON ; Wook-Gyo LEE ; Suyeon JEONG ; Jusim KIM ; Byungsik BAE ; Ja Eun KIM ; Hyeonsoo KIM ; Hye Young LEE ; Sang-Eun LEE ; Jong Mu KIM ; Hanul PARK ; Mi YU ; Jihyun CHOI ; Jia KIM ; Hyeryeon LEE ; Eun-Jung JANG ; Dosang LIM ; Sangwon LEE ; Young-Joon PARK
Journal of Korean Medical Science 2021;36(50):e346-
In November 2021, 14 international travel-related severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (omicron) variant of concern (VOC) patients were detected in South Korea. Epidemiologic investigation revealed community transmission of the omicron VOC. A total of 80 SARS-CoV-2 omicron VOC-positive patients were identified until December 10, 2021 and 66 of them reported no relation to the international travel.There may be more transmissions with this VOC in Korea than reported.
8.Clinical Presentation and Outcomes of Middle East Respiratory Syndrome in the Republic of Korea.
Won Suk CHOI ; Cheol In KANG ; Yonjae KIM ; Jae Phil CHOI ; Joon Sung JOH ; Hyoung Shik SHIN ; Gayeon KIM ; Kyong Ran PECK ; Doo Ryeon CHUNG ; Hye Ok KIM ; Sook Hee SONG ; Yang Ree KIM ; Kyung Mok SOHN ; Younghee JUNG ; Ji Hwan BANG ; Nam Joong KIM ; Kkot Sil LEE ; Hye Won JEONG ; Ji Young RHEE ; Eu Suk KIM ; Heungjeong WOO ; Won Sup OH ; Kyungmin HUH ; Young Hyun LEE ; Joon Young SONG ; Jacob LEE ; Chang Seop LEE ; Baek Nam KIM ; Young Hwa CHOI ; Su Jin JEONG ; Jin Soo LEE ; Ji Hyun YOON ; Yu Mi WI ; Mi Kyong JOUNG ; Seong Yeon PARK ; Sun Hee LEE ; Sook In JUNG ; Shin Woo KIM ; Jae Hoon LEE ; Hyuck LEE ; Hyun Kyun KI ; Yeon Sook KIM
Infection and Chemotherapy 2016;48(2):118-126
BACKGROUND: From May to July 2015, the Republic of Korea experienced the largest outbreak of Middle East respiratory syndrome (MERS) outside the Arabian Peninsula. A total of 186 patients, including 36 deaths, had been diagnosed with MERS-coronavirus (MERS-CoV) infection as of September 30th, 2015. MATERIALS AND METHODS: We obtained information of patients who were confirmed to have MERS-CoV infection. MERS-CoV infection was diagnosed using real-time reverse-transcriptase polymerase chain reaction assay. RESULTS: The median age of the patients was 55 years (range, 16 to 86). A total of 55.4% of the patients had one or more coexisting medical conditions. The most common symptom was fever (95.2%). At admission, leukopenia (42.6%), thrombocytopenia (46.6%), and elevation of aspartate aminotransferase (42.7%) were observed. Pneumonia was detected in 68.3% of patients at admission and developed in 80.8% during the disease course. Antiviral agents were used for 74.7% of patients. Mechanical ventilation, extracorporeal membrane oxygenation, and convalescent serum were employed for 24.5%, 7.1%, and 3.8% of patients, respectively. Older age, presence of coexisting medical conditions including diabetes or chronic lung disease, presence of dyspnea, hypotension, and leukocytosis at admission, and the use of mechanical ventilation were revealed to be independent predictors of death. CONCLUSION: The clinical features of MERS-CoV infection in the Republic of Korea were similar to those of previous outbreaks in the Middle East. However, the overall mortality rate (20.4%) was lower than that in previous reports. Enhanced surveillance and active management of patients during the outbreak may have resulted in improved outcomes.
Antiviral Agents
;
Aspartate Aminotransferases
;
Coronavirus Infections*
;
Disease Outbreaks
;
Dyspnea
;
Extracorporeal Membrane Oxygenation
;
Fever
;
Humans
;
Hypotension
;
Leukocytosis
;
Leukopenia
;
Lung Diseases
;
Middle East Respiratory Syndrome Coronavirus
;
Middle East*
;
Mortality
;
Pneumonia
;
Polymerase Chain Reaction
;
Republic of Korea*
;
Respiration, Artificial
;
Thrombocytopenia
9.Association between Baseline Serum Uric Acid Levels with Functional Outcomes at 3 Months after Acute Ischemic Stroke.
So Young PYUN ; Young Eun KIM ; Mi Sun OH ; Kyung Ho YU ; Bohee KIM ; Eunjoo RHEE ; Byung Chul LEE
Journal of the Korean Neurological Association 2014;32(4):246-253
BACKGROUND: Currently available data suggests that uric acid (UA) functions as an antioxidant after acute ischemic stroke (AIS). Nevertheless, the prognostic value of serum UA in AIS is controversial. The aim of this study was to determine the relationship between UA and functional outcomes after AIS. METHODS: UA levels were analyzed within 48 hours of stroke onset in patients between 2007 and 2012. Mean serum UA levels were compared between patients with good and poor functional outcomes (modified Rankin Scale [mRS] score, 0-2 versus 3-6, respectively) at 3 months poststroke, and with and without early neurological improvement (ENI, > or = 4-versus <4-point differences on the National Institutes of Health Stroke Scale [NIHSS] score after 7 days). RESULTS: Serum UA levels differed according to the sex, age, stroke subtype, and presence of diabetes mellitus, smoking, and atrial fibrillation. Multivariate logistic regression analysis revealed an association between good functional outcome at 3 months and male gender, young age, history of dyslipidemia, good functional status before stroke (mRS score, 0-2), and low stroke severity (i.e., NIHSS score) on admission. However, higher serum UA levels were no longer associated with a good functional outcomes (odds ratio, 1.387; 95% confidence interval, 0.857-2.244; p=0.521). The mean serum UA levels did not differ significantly between patients with and without ENI. CONCLUSIONS: There was no association between serum UA levels and functional outcomes at 3 months in AIS.
Atrial Fibrillation
;
Cerebral Infarction
;
Cerebrovascular Disorders
;
Diabetes Mellitus
;
Dyslipidemias
;
Humans
;
Logistic Models
;
Male
;
Myocardial Infarction
;
National Institutes of Health (U.S.)
;
Smoke
;
Smoking
;
Stroke*
;
Uric Acid*
10.The Relationship of Body Composition and Coronary Artery Calcification in Apparently Healthy Korean Adults.
Jung Hee YU ; Seo Hyoung YIM ; Su Hyeon YU ; Ji Yong LEE ; Jong Dae KIM ; Mi Hae SEO ; Won Seon JEON ; Se Eun PARK ; Cheol Young PARK ; Won Young LEE ; Ki Won OH ; Sung Woo PARK ; Eun Jung RHEE
Endocrinology and Metabolism 2013;28(1):33-40
BACKGROUND: We investigated the association of coronary artery calcium score (CACS) with body composition and insulin resistance in apparently healthy Korean adults. METHODS: Nine hundred forty-five participants (mean age, 48.9 years; 628 men) in a medical check-up program were selected for analysis. Body composition was assessed by bioelectrical impedance analysis (BIA). Insulin resistance was evaluated using the homeostasis model assessment of insulin resistance (HOMA-IR). The CACS was assessed by multidetector computed tomography. RESULTS: One hundred forty-six subjects (15.4%) showed coronary artery calcification and 148 subjects (15.7%) had metabolic syndrome. CACS showed a significant positive correlation with age, fasting glucose level, waist circumference (WC), blood pressure, hemoglobin A1c, HOMA-IR, and waist-hip ratio (WHR) assessed by BIA. CACS had a negative correlation with high density lipoprotein cholesterol (HDL-C). Subjects with high CACS showed significantly higher mean WHRs and lower mean values for lean body mass compared with subjects without coronary artery calcification. In logistic regression analyses with coronary artery calcification as the dependent variable, the highest quartile of WHR showed a 3.125-fold increased odds ratio for coronary artery calcification compared with the lowest quartile after adjustment for confounding variables. When receiver operating characteristics analyses were performed with coronary artery calcification as the result variable, WHR showed the largest area under the curve (AUC) value among other variables except for age and WC in women (AUC=0.696 for WHR, 0.790 for age, and 0.719 for WC in women). CONCLUSION: In our study population of apparently healthy Korean adults, WHR was the most significant predictor for coronary artery calcification among other confounding factors, suggesting that it may have implication as a marker for early atherosclerosis.
Adult
;
Atherosclerosis
;
Blood Pressure
;
Body Composition
;
Calcium
;
Cholesterol
;
Cholesterol, HDL
;
Confounding Factors (Epidemiology)
;
Coronary Vessels
;
Electric Impedance
;
Fasting
;
Female
;
Glucose
;
Hemoglobins
;
Homeostasis
;
Humans
;
Insulin Resistance
;
Lipoproteins
;
Logistic Models
;
Obesity, Abdominal
;
Odds Ratio
;
ROC Curve
;
Waist Circumference
;
Waist-Hip Ratio

Result Analysis
Print
Save
E-mail