1.Development of an Instantaneously Interpretable Real-Time Dosimeter System for Quality Assurance of a Medical Linear Accelerator
Dongyeon LEE ; Sung Jin KIM ; Wonjoong CHEON ; Hyosung CHO ; Youngyih HAN
Progress in Medical Physics 2024;35(4):178-204
Purpose:
Modern radiotherapy delivers radiation doses to targets within a few minutes using intricate multiple-beam segments determined with multi-leaf collimators (MLC). Therefore, we propose a scintillator-based dosimetry system capable of assessing the dosimetric and mechanical performance of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in real time.
Methods:
The dosimeter was equipped with a scintillator plate and two digital cameras. The dose distribution was generated by applying deep learning-based signal processing to correct the intrinsic characteristics of the camera sensor and a tomographic image reconstruction technique to rectify the geometric distortion of the recorded video. Dosimetric evaluations were performed using a gamma analysis against a two-dimensional array and radiochromic film measurements for 20 clinical cases. The average difference in the MLC position measurements and machine log files was tested for the applicability of the mechanical quality assurance (QA) of MLCs.
Results:
The agreement of the dose distribution in the IMRT and VMAT plans was clinically acceptable between the proposed system and conventional dosimeters. The average differences in the MLC positions for the IMRT/VMAT plans were 1.7010/2.8107 mm and 1.4722/2.7713 mm in banks A and B, respectively.
Conclusions
In this study, we developed an instantaneously interpretable real-time dosimeter for QA in a medical linear accelerator using a scintillator plate and digital cameras. The feasibility of the proposed system was investigated using dosimetric and mechanical evaluations in the IMRT and VMAT plans. The developed system has clinically acceptable accuracy in both the dosimetric and mechanical QAs of the IMRT and VMAT plans.
2.Development of an Instantaneously Interpretable Real-Time Dosimeter System for Quality Assurance of a Medical Linear Accelerator
Dongyeon LEE ; Sung Jin KIM ; Wonjoong CHEON ; Hyosung CHO ; Youngyih HAN
Progress in Medical Physics 2024;35(4):178-204
Purpose:
Modern radiotherapy delivers radiation doses to targets within a few minutes using intricate multiple-beam segments determined with multi-leaf collimators (MLC). Therefore, we propose a scintillator-based dosimetry system capable of assessing the dosimetric and mechanical performance of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in real time.
Methods:
The dosimeter was equipped with a scintillator plate and two digital cameras. The dose distribution was generated by applying deep learning-based signal processing to correct the intrinsic characteristics of the camera sensor and a tomographic image reconstruction technique to rectify the geometric distortion of the recorded video. Dosimetric evaluations were performed using a gamma analysis against a two-dimensional array and radiochromic film measurements for 20 clinical cases. The average difference in the MLC position measurements and machine log files was tested for the applicability of the mechanical quality assurance (QA) of MLCs.
Results:
The agreement of the dose distribution in the IMRT and VMAT plans was clinically acceptable between the proposed system and conventional dosimeters. The average differences in the MLC positions for the IMRT/VMAT plans were 1.7010/2.8107 mm and 1.4722/2.7713 mm in banks A and B, respectively.
Conclusions
In this study, we developed an instantaneously interpretable real-time dosimeter for QA in a medical linear accelerator using a scintillator plate and digital cameras. The feasibility of the proposed system was investigated using dosimetric and mechanical evaluations in the IMRT and VMAT plans. The developed system has clinically acceptable accuracy in both the dosimetric and mechanical QAs of the IMRT and VMAT plans.
3.Development of an Instantaneously Interpretable Real-Time Dosimeter System for Quality Assurance of a Medical Linear Accelerator
Dongyeon LEE ; Sung Jin KIM ; Wonjoong CHEON ; Hyosung CHO ; Youngyih HAN
Progress in Medical Physics 2024;35(4):178-204
Purpose:
Modern radiotherapy delivers radiation doses to targets within a few minutes using intricate multiple-beam segments determined with multi-leaf collimators (MLC). Therefore, we propose a scintillator-based dosimetry system capable of assessing the dosimetric and mechanical performance of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in real time.
Methods:
The dosimeter was equipped with a scintillator plate and two digital cameras. The dose distribution was generated by applying deep learning-based signal processing to correct the intrinsic characteristics of the camera sensor and a tomographic image reconstruction technique to rectify the geometric distortion of the recorded video. Dosimetric evaluations were performed using a gamma analysis against a two-dimensional array and radiochromic film measurements for 20 clinical cases. The average difference in the MLC position measurements and machine log files was tested for the applicability of the mechanical quality assurance (QA) of MLCs.
Results:
The agreement of the dose distribution in the IMRT and VMAT plans was clinically acceptable between the proposed system and conventional dosimeters. The average differences in the MLC positions for the IMRT/VMAT plans were 1.7010/2.8107 mm and 1.4722/2.7713 mm in banks A and B, respectively.
Conclusions
In this study, we developed an instantaneously interpretable real-time dosimeter for QA in a medical linear accelerator using a scintillator plate and digital cameras. The feasibility of the proposed system was investigated using dosimetric and mechanical evaluations in the IMRT and VMAT plans. The developed system has clinically acceptable accuracy in both the dosimetric and mechanical QAs of the IMRT and VMAT plans.
4.Development of an Instantaneously Interpretable Real-Time Dosimeter System for Quality Assurance of a Medical Linear Accelerator
Dongyeon LEE ; Sung Jin KIM ; Wonjoong CHEON ; Hyosung CHO ; Youngyih HAN
Progress in Medical Physics 2024;35(4):178-204
Purpose:
Modern radiotherapy delivers radiation doses to targets within a few minutes using intricate multiple-beam segments determined with multi-leaf collimators (MLC). Therefore, we propose a scintillator-based dosimetry system capable of assessing the dosimetric and mechanical performance of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in real time.
Methods:
The dosimeter was equipped with a scintillator plate and two digital cameras. The dose distribution was generated by applying deep learning-based signal processing to correct the intrinsic characteristics of the camera sensor and a tomographic image reconstruction technique to rectify the geometric distortion of the recorded video. Dosimetric evaluations were performed using a gamma analysis against a two-dimensional array and radiochromic film measurements for 20 clinical cases. The average difference in the MLC position measurements and machine log files was tested for the applicability of the mechanical quality assurance (QA) of MLCs.
Results:
The agreement of the dose distribution in the IMRT and VMAT plans was clinically acceptable between the proposed system and conventional dosimeters. The average differences in the MLC positions for the IMRT/VMAT plans were 1.7010/2.8107 mm and 1.4722/2.7713 mm in banks A and B, respectively.
Conclusions
In this study, we developed an instantaneously interpretable real-time dosimeter for QA in a medical linear accelerator using a scintillator plate and digital cameras. The feasibility of the proposed system was investigated using dosimetric and mechanical evaluations in the IMRT and VMAT plans. The developed system has clinically acceptable accuracy in both the dosimetric and mechanical QAs of the IMRT and VMAT plans.
5.Development of an Instantaneously Interpretable Real-Time Dosimeter System for Quality Assurance of a Medical Linear Accelerator
Dongyeon LEE ; Sung Jin KIM ; Wonjoong CHEON ; Hyosung CHO ; Youngyih HAN
Progress in Medical Physics 2024;35(4):178-204
Purpose:
Modern radiotherapy delivers radiation doses to targets within a few minutes using intricate multiple-beam segments determined with multi-leaf collimators (MLC). Therefore, we propose a scintillator-based dosimetry system capable of assessing the dosimetric and mechanical performance of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in real time.
Methods:
The dosimeter was equipped with a scintillator plate and two digital cameras. The dose distribution was generated by applying deep learning-based signal processing to correct the intrinsic characteristics of the camera sensor and a tomographic image reconstruction technique to rectify the geometric distortion of the recorded video. Dosimetric evaluations were performed using a gamma analysis against a two-dimensional array and radiochromic film measurements for 20 clinical cases. The average difference in the MLC position measurements and machine log files was tested for the applicability of the mechanical quality assurance (QA) of MLCs.
Results:
The agreement of the dose distribution in the IMRT and VMAT plans was clinically acceptable between the proposed system and conventional dosimeters. The average differences in the MLC positions for the IMRT/VMAT plans were 1.7010/2.8107 mm and 1.4722/2.7713 mm in banks A and B, respectively.
Conclusions
In this study, we developed an instantaneously interpretable real-time dosimeter for QA in a medical linear accelerator using a scintillator plate and digital cameras. The feasibility of the proposed system was investigated using dosimetric and mechanical evaluations in the IMRT and VMAT plans. The developed system has clinically acceptable accuracy in both the dosimetric and mechanical QAs of the IMRT and VMAT plans.
6.Evaluating psychological anxiety in patients receiving radiation therapy using smartwatch
Sangwoon JEONG ; Chanil JEON ; Dongyeon LEE ; Won PARK ; Hongryull PYO ; Youngyih HAN
Radiation Oncology Journal 2024;42(2):148-153
Purpose:
Patients undergoing radiation therapy (RT) often experience psychological anxiety that manifests as muscle contraction. Our study explored psychological anxiety in these patients by using biological signals recorded using a smartwatch.
Materials and Methods:
Informed consent was obtained from participating patients prior to the initiation of RT. The patients wore a smartwatch from the waiting room until the conclusion of the treatment. The smartwatch acquired data related to heart rate features (average, minimum, and maximum) and stress score features (average, minimum, and maximum). On the first day of treatment, we analyzed the participants' heart rates and stress scores before and during the treatment. The acquired data were categorized according to sex and age. For patients with more than three days of data, we observed trends in heart rate during treatment relative to heart rate before treatment (HRtb) over the course of treatment. Statistical analyses were performed using the Wilcoxon signed-rank test and paired t-test.
Results:
Twenty-nine individuals participated in the study, of which 17 had more than 3 days of data. During treatment, all patients exhibited elevated heart rates and stress scores, particularly those in the younger groups. The HRtb levels decreased as treatment progresses.
Conclusion
Patients undergoing RT experience notable psychological anxiety, which tends to diminish as the treatment progresses. Early stage interventions are crucial to alleviate patient anxiety during RT.
7.Current status of proton therapy techniques for lung cancer
Radiation Oncology Journal 2019;37(4):232-248
Proton beams have been used for cancer treatment for more than 28 years, and several technological advancements have been made to achieve improved clinical outcomes by delivering more accurate and conformal doses to the target cancer cells while minimizing the dose to normal tissues. The state-of-the-art intensity modulated proton therapy is now prevailing as a major treatment technique in proton facilities worldwide, but still faces many challenges in being applied to the lung. Thus, in this article, the current status of proton therapy technique is reviewed and issues regarding the relevant uncertainty in proton therapy in the lung are summarized.
Lung Neoplasms
;
Lung
;
Proton Therapy
;
Protons
;
Uncertainty
8.Initial clinical outcomes of proton beam radiotherapy for hepatocellular carcinoma
Jeong Il YU ; Gyu Sang YOO ; Sungkoo CHO ; Sang Hoon JUNG ; Youngyih HAN ; Seyjoon PARK ; Boram LEE ; Wonseok KANG ; Dong Hyun SINN ; Yong Han PAIK ; Geum Youn GWAK ; Moon Seok CHOI ; Joon Hyeok LEE ; Kwang Cheol KOH ; Seung Woon PAIK ; Hee Chul PARK
Radiation Oncology Journal 2018;36(1):25-34
PURPOSE: This study aimed to evaluate the initial outcomes of proton beam therapy (PBT) for hepatocellular carcinoma (HCC) in terms of tumor response and safety. MATERIALS AND METHODS: HCC patients who were not indicated for standard curative local modalities and who were treated with PBT at Samsung Medical Center from January 2016 to February 2017 were enrolled. Toxicity was scored using the Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Tumor response was evaluated using modified Response Evaluation Criteria in Solid Tumors (mRECIST). RESULTS: A total of 101 HCC patients treated with PBT were included. Patients were treated with an equivalent dose of 62–92 GyE10. Liver function status was not significantly affected after PBT. Greater than 80% of patients had Child-Pugh class A and albumin-bilirubin (ALBI) grade 1 up to 3-months after PBT. Of 78 patients followed for three months after PBT, infield complete and partial responses were achieved in 54 (69.2%) and 14 (17.9%) patients, respectively. CONCLUSION: PBT treatment of HCC patients showed a favorable infield complete response rate of 69.2% with acceptable acute toxicity. An additional follow-up study of these patients will be conducted.
Carcinoma, Hepatocellular
;
Follow-Up Studies
;
Humans
;
Liver
;
Proton Therapy
;
Protons
;
Radiotherapy
;
Response Evaluation Criteria in Solid Tumors
9.A feasibility study evaluating the relationship between dose and focal liver reaction in stereotactic ablative radiotherapy for liver cancer based on intensity change of Gd-EOB-DTPA-enhanced magnetic resonance images.
Sang Hoon JUNG ; Jeong Il YU ; Hee Chul PARK ; Do Hoon LIM ; Youngyih HAN
Radiation Oncology Journal 2016;34(1):64-75
PURPOSE: In order to evaluate the relationship between the dose to the liver parenchyma and focal liver reaction (FLR) after stereotactic ablative body radiotherapy (SABR), we suggest a novel method using a three-dimensional dose distribution and change in signal intensity of gadoxetate disodium-gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) hepatobiliary phase images. MATERIALS AND METHODS: In our method, change of the signal intensity between the pretreatment and follow-up hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was calculated and then threshold dose (TD) for developing FLR was obtained from correlation of dose with the change of the signal intensity. For validation of the method, TDs for six patients, who had been treated for liver cancer with SABR with 45-60 Gy in 3 fractions, were calculated using the method, and we evaluated concordance between volume enclosed by isodose of TD by the method and volume identified as FLR by a physician. RESULTS: The dose to normal liver was correlated with change in signal intensity between pretreatment and follow-up MRI with a median R2 of 0.935 (range, 0.748 to 0.985). The median TD by the method was 23.5 Gy (range, 18.3 to 39.4 Gy). The median value of concordance was 84.5% (range, 44.7% to 95.9%). CONCLUSION: Our method is capable of providing a quantitative evaluation of the relationship between dose and intensity changes on follow-up MRI, as well as determining individual TD for developing FLR. We expect our method to provide better information about the individual relationship between dose and FLR in radiotherapy for liver cancer.
Evaluation Studies as Topic
;
Feasibility Studies*
;
Follow-Up Studies
;
Gadolinium DTPA
;
Humans
;
Image Processing, Computer-Assisted
;
Liver Neoplasms*
;
Liver*
;
Magnetic Resonance Imaging
;
Pentetic Acid
;
Radiation Effects
;
Radiosurgery
;
Radiotherapy*
10.The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center.
Kwangzoo CHUNG ; Youngyih HAN ; Jinsung KIM ; Sung Hwan AHN ; Sang Gyu JU ; Sang Hoon JUNG ; Yoonsun CHUNG ; Sungkoo CHO ; Kwanghyun JO ; Eun Hyuk SHIN ; Chae Seon HONG ; Jung Suk SHIN ; Seyjoon PARK ; Dae Hyun KIM ; Hye Young KIM ; Boram LEE ; Gantaro SHIBAGAKI ; Hideki NONAKA ; Kenzo SASAI ; Yukio KOYABU ; Changhoon CHOI ; Seung Jae HUH ; Yong Chan AHN ; Hong Ryull PYO ; Do Hoon LIM ; Hee Chul PARK ; Won PARK ; Dong Ryul OH ; Jae Myung NOH ; Jeong Il YU ; Sanghyuk SONG ; Ji Eun LEE ; Bomi LEE ; Doo Ho CHOI
Radiation Oncology Journal 2015;33(4):337-343
PURPOSE: The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. MATERIALS AND METHODS: The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. RESULTS: The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. CONCLUSION: The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.
Cyclotrons
;
Helium
;
Humans
;
Korea*
;
Metallurgy
;
Particle Accelerators
;
Patient Positioning
;
Proton Therapy*
;
Protons*
;
Radiation Oncology
;
Respiratory System
;
Seoul

Result Analysis
Print
Save
E-mail