1.Association between specific IgE to staphylococcal enterotoxin B and the eosinophilic phenotype of asthma
Soyoon SIM ; Youngwoo CHOI ; Eun-Mi YANG ; Hae-Sim PARK
The Korean Journal of Internal Medicine 2024;39(4):659-667
Background/Aims:
Sensitization to staphylococcal superantigens (SAgs) could contribute to asthma severity. However, its relevance with eosinophilic phenotype has not yet been clarified. This study aimed to investigate associations between serum specific IgE levels to SAg and eosinophilic airway inflammation in adult asthmatics.
Methods:
The serum specific IgE levels to 3 SAgs, including staphylococcal enterotoxin A (SEA) and B (SEB), and toxic shock syndrome toxin-1 (TSST-1) were measured by ImmunoCAP in 230 adult asthmatic patients and 50 healthy controls (HCs). Clinical characteristics and laboratory parameters, including serum total/free IgE, and 2 eosinophil-activation markers, eosinophil cationic protein (ECP), and eosinophil-derived neurotoxin (EDN), were analyzed according to blood eosinophil counts (BEC; 150 cells/μL) and serum specific IgE levels to 3 SAgs (0.35 kU/L).
Results:
Asthmatic patients showed higher serum specific IgE levels to 3 SAgs than HCs (p < 0.05 for all). The serum total/clinfree IgE levels were significantly higher in asthmatics with positive IgE responses to 3 SAgs than those without (p < 0.05 for all). There were no significant differences in clinical parameters including age, asthma severity, comorbidities, or smoking according to IgE responses to 3 SAgs. Patients with positive IgE responses to SEB (not to SEA/TSST-1) had higher serum specific IgE levels to house dust mites and ECP/EDN as well as higher BEC with positive correlations between serum SEB-specific IgE levels and BEC/ECP/EDN (p < 0.05 for all).
Conclusions
These findings suggest that serum SEB-specific IgE levels could contribute to eosinophil activation as well as IgE production in adult asthma.
2.New targets for type 2-low asthma
Quang Luu QUOC ; Youngwoo CHOI ; Gyu-Young HUR ; Hae-Sim PARK
The Korean Journal of Internal Medicine 2024;39(2):215-227
Asthma is characterized by airway obstruction and inflammation, and presents significant diagnostic and treatment challenges. The concept of endotypes has improved understanding of the mechanisms of asthma and has stimulated the development of effective treatment strategies. Sputum profiles may be used to classify asthma into two major inflammatory types: type 2-high (T2H) and type 2-low (T2L) asthma. T2H, characterized by elevated type 2 inflammation, has been extensively studied and several effective biologic treatments have been developed. However, managing T2L is more difficult due to the lack of reliable biomarkers for accurate diagnosis and classification. Additionally, conventional anti-inflammatory therapy does not completely control the symptoms of T2L; therefore, further research is needed to identify effective biologic treatments. This review provides new insights into the clinical characteristics and underlying mechanisms of severe T2L and investigates potential therapeutic approaches to control the disease.
3.Comparison of the Data of a Next-Generation Sequencing Panel from K-MASTER Project with That of Orthogonal Methods for Detecting Targetable Genetic Alterations
Yoon Ji CHOI ; Jung Yoon CHOI ; Ju Won KIM ; Ah Reum LIM ; Youngwoo LEE ; Won Jin CHANG ; Soohyeon LEE ; Jae Sook SUNG ; Hee-Joon CHUNG ; Jong Won LEE ; Eun Joo KANG ; Jung Sun KIM ; Taekyu LIM ; Hye Sook KIM ; Yu Jung KIM ; Mi Sun AHN ; Young Saing KIM ; Ji Hyun PARK ; Seungtaek LIM ; Sung Shim CHO ; Jang Ho CHO ; Sang Won SHIN ; Kyong Hwa PARK ; Yeul Hong KIM
Cancer Research and Treatment 2022;54(1):30-39
Purpose:
K-MASTER project is a Korean national precision medicine platform that screened actionable mutations by analyzing next-generation sequencing (NGS) of solid tumor patients. We compared gene analyses between NGS panel from the K-MASTER project and orthogonal methods.
Materials and Methods:
Colorectal, breast, non–small cell lung, and gastric cancer patients were included. We compared NGS results from K-MASTER projects with those of non-NGS orthogonal methods (KRAS, NRAS, and BRAF mutations in colorectal cancer [CRC]; epidermal growth factor receptor [EGFR], anaplastic lymphoma kinase [ALK] fusion, and reactive oxygen species 1 [ROS1] fusion in non–small cell lung cancer [NSCLC], and Erb-B2 receptor tyrosine kinase 2 (ERBB2) positivity in breast and gastric cancers).
Results:
In the CRC cohort (n=225), the sensitivity and specificity of NGS were 87.4% and 79.3% (KRAS); 88.9% and 98.9% (NRAS); and 77.8% and 100.0% (BRAF), respectively. In the NSCLC cohort (n=109), the sensitivity and specificity of NGS for EGFR were 86.2% and 97.5%, respectively. The concordance rate for ALK fusion was 100%, but ROS1 fusion was positive in only one of three cases that were positive in orthogonal tests. In the breast cancer cohort (n=260), ERBB2 amplification was detected in 45 by NGS. Compared with orthogonal methods that integrated immunohistochemistry and in situ hybridization, sensitivity and specificity were 53.7% and 99.4%, respectively. In the gastric cancer cohort (n=64), ERBB2 amplification was detected in six by NGS. Compared with orthogonal methods, sensitivity and specificity were 62.5% and 98.2%, respectively.
Conclusion
The results of the K-MASTER NGS panel and orthogonal methods showed a different degree of agreement for each genetic alteration, but generally showed a high agreement rate.
4.Clinical Application of Targeted Deep Sequencing in Metastatic Colorectal Cancer Patients: Actionable Genomic Alteration in K-MASTER Project
Youngwoo LEE ; Soohyeon LEE ; Jae Sook SUNG ; Hee-Joon CHUNG ; Ah-reum LIM ; Ju Won KIM ; Yoon Ji CHOI ; Kyong Hwa PARK ; Yeul Hong KIM
Cancer Research and Treatment 2021;53(1):123-130
Purpose:
Next-generation sequencing (NGS) can facilitate precision medicine approaches in metastatic colorectal cancer (mCRC) patients. We investigated the molecular profiling of Korean mCRC patients under the K-MASTER project which was initiated in June 2017 as a nationwide precision medicine oncology clinical trial platform which used NGS assay to screen actionable mutations.
Materials and Methods:
As of 22 January 2020, total of 994 mCRC patients were registered in K-MASTER project. Targeted sequencing was performed using three platforms which were composed of the K-MASTER cancer panel v1.1 and the SNUH FIRST Cancer Panel v3.01. If tumor tissue was not available, cell-free DNA was extracted and the targeted sequencing was performed by Axen Cancer Panel as a liquid biopsy.
Results:
In 994 mCRC patients, we found 1,564 clinically meaningful pathogenic variants which mutated in 71 genes. Anti-EGFR therapy candidates were 467 patients (47.0%) and BRAF V600E mutation (n=47, 4.7%), deficient mismatch repair/microsatellite instability–high (n=15, 1.5%), HER2 amplifications (n=10, 1.0%) could be incorporated with recently approved drugs. The patients with high tumor mutation burden (n=101, 12.7%) and DNA damaging response and repair defect pathway alteration (n=42, 4.2%) could be enrolled clinical trials with immune checkpoint inhibitors. There were more colorectal cancer molecular alterations such as PIK3CA, KRAS G12C, atypical BRAF, and HER2 mutations and even rarer but actionable genes that approved or ongoing clinical trials in other solid tumors.
Conclusion
K-MASTER project provides an intriguing background to investigate new clinical trials with biomarkers and give therapeutic opportunity for mCRC patients.
6.Distinct functions of eosinophils in severe asthma with type 2 phenotype: clinical implications
Youngwoo CHOI ; Soyoon SIM ; Hae-Sim PARK
The Korean Journal of Internal Medicine 2020;35(4):823-833
Asthma is commonly recognized as a heterogeneous condition with a complex pathophysiology. With advances in the development of multiple medications for patients with asthma, most asthma symptoms are well managed. Nevertheless, 5% to 10% of adult asthmatic patients (called severe asthma) are in uncontrolled or partially controlled status despite intensive treatment. Especially, severe eosinophilic asthma is one of the severe asthma phenotypes characterized by eosinophilia in sputum/blood driven by type 2 immune responses. Eosinophils have been widely accepted as a central effector cell in the lungs. Some evidence has demonstrated that persistent eosinophilia in upper and lower airway mucosa contributes to asthma severity by producing various mediators including cytokines, chemokines and granule proteins. Moreover, extracellular traps released from eosinophils have been revealed to enhance type 2 inflammation in patients with severe asthma. These novel molecules have the ability to induce airway inf lammation and hyperresponsiveness through enhancing innate and type 2 immune responses. In this review, we highlight recent insight into the function of eosinophil extracellular traps in patients with severe asthma. In addition, the role of eosinophil extracellular vesicles in severe asthma is also proposed. Finally, current biologics are suggested as a potential strategy for effective management of severe eosinophilic asthma.
8.Significant reduction in the density of premature ventricular complex with ß‑blocker medication in fast rate‑dependent premature ventricular complex
Yae Min PARK ; Chang Yun KIM ; Jungduk SEO ; Albert Youngwoo JANG ; Mi Sook CHA ; Woong Chol KANG ; Seung Hwan HAN ; Mi‑Seung SHIN ; In Suck CHOI
International Journal of Arrhythmia 2020;21(4):20-
Background:
There is little data regarding types of idiopathic premature ventricular complex (PVC) according to heart rate dependence.
Methods:
One hundred and sixty-eight patients with idiopathic PVC were enrolled in this study. Evaluation of the number of PVCs and total ventricular beats, and the density of PVC was done using 24 h Holter monitoring. Patients were divided into groups as having: fast rate-dependent (Group I), slow rate-dependent (Group II), and heart rateindependent PVC (Group III) based on the relationship between the number of hourly PVC and hourly heart rate. After ß-blocker medication, 24 h Holter monitoring was repeated.
Results:
Among the 168 subjects, 66 (39.3%) patients were in Group I, 18 (10.7%) in Group II, and 84 (50.0%) in Group III. There were no significant differences in the baseline number of PVCs and total ventricular beats, and the density of PVC among the three groups. The number of PVCs was significantly reduced in patients with Group I (14,030 ± 11,463 beats/day vs. 7401 ± 10,464 beats/day, p < 0.001), and total ventricular beat was significantly reduced in patients with Group I (109,223 ± 17,564 beats/day vs. 96,182 ± 15,594 beats/day, p < 0.001) and Group III (106,515 ± 13,468 beats/ day vs. 97,995 ± 12,960 beats/day, p < 0.001) after ß-blocker medication. The density of PVC was significantly reduced only in patients of Group I (12.9 ± 10.3% vs. 7.4 ± 10.3%, p = 0.001) after ß-blocker medication.
Conclusions
The type of PVC according to the heart rate dependence should be considered when treating idi‑ opathic PVC with ß-blockers.
9.Serum Levels of Eosinophil-Derived Neurotoxin: A Biomarker for Asthma Severity in Adult Asthmatics
Youngsoo LEE ; Ji Ho LEE ; Eun Mi YANG ; EunMi KWON ; Chang Gyu JUNG ; Su Chin KIM ; Youngwoo CHOI ; You Sook CHO ; Chang Keun KIM ; Hae Sim PARK
Allergy, Asthma & Immunology Research 2019;11(3):394-405
PURPOSE: Eosinophilic inflammation is a key component of severe asthma (SA). However, there has been no reliable serum biomarker for the eosinophilic inflammation of SA. We hypothesized that serum eosinophil-derived neurotoxin (EDN) could predict the eosinophilic inflammation of SA in adult asthmatics. METHODS: Severe asthmatics (n = 235), nonsevere asthmatics (n = 898), and healthy controls (n = 125) were enrolled from Ajou University Hospital, South Korea. The serum levels of EDN and periostin were measured by enzyme-linked immunosorbent assay and compared between severe and nonsevere asthmatics. Their associations with total eosinophil count (TEC) and clinical parameters were evaluated; clinical validation of the K-EDN kit for the measurement of serum EDN was evaluated. RESULTS: Severe asthmatics were older and had longer disease duration with significantly lower levels of forced expiratory volume in 1 second and methacholine PC20 than nonsevere asthmatics. Significant differences were found in TEC or sputum eosinophil count (%) between the groups. The serum levels of EDN and periostin were significantly higher in severe asthmatics than in nonsevere asthmatics and in healthy controls (all P < 0.05). Although significant correlations were found between serum EDN levels measured by the 2 kits (ρ = 0.545, P < 0.0001), higher correlation coefficients between serum EDN levels measured by the K-EDN kit and TEC were higher (ρ = 0.358, P < 0.0001) than those between serum EDN levels measured by the MBL kit and TEC (ρ = 0.319, P < 0.0001) or serum periostin level (ρ = 0.222, P < 0.0001). Multivariate regression analysis demonstrated that serum EDN levels measured by the K-EDN kit predicted the phenotype of SA (P = 0.003), while 2 other biomarkers did not. CONCLUSIONS: The serum EDN level may be a useful biomarker for assessing asthma severity in adult asthmatics.
Adult
;
Asthma
;
Biomarkers
;
Enzyme-Linked Immunosorbent Assay
;
Eosinophil-Derived Neurotoxin
;
Eosinophils
;
Forced Expiratory Volume
;
Humans
;
Inflammation
;
Korea
;
Methacholine Chloride
;
Phenotype
;
Sputum
10.Which Factors Associated With Activated Eosinophils Contribute to the Pathogenesis of Aspirin-Exacerbated Respiratory Disease?
Youngwoo CHOI ; Youngsoo LEE ; Hae Sim PARK
Allergy, Asthma & Immunology Research 2019;11(3):320-329
Eosinophils have long been recognized as a central effector cell in the lungs of asthmatic patients. They contribute to airway inflammation and remodeling through releasing several molecules such as cytokines, granule proteins, lipid mediators and extracellular traps/vesicles. Repeated evidence reveals that intense eosinophil infiltration in upper and lower airway mucosae contributes to the pathogenesis of aspirin-exacerbated respiratory disease (AERD). Persistent eosinophilia is found to be associated with type 2 immune responses, cysteinyl leukotriene overproduction and eosinophil-epithelium interactions. This review highlights recent findings about key mechanisms of eosinophil activation in the airway inflammation of AERD. In addition, current biologics (targeting type 2 immune responses) were suggested to control eosinophilic inflammation for AERD patients.

Result Analysis
Print
Save
E-mail