1.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
2.Impact of COVID-19 lockdown on blood glucose levels in pediatric patients with type 1 diabetes mellitus
Min Hyung CHO ; Young Suk SHIM ; Hae Sang LEE
Annals of Pediatric Endocrinology & Metabolism 2025;30(1):25-30
Purpose:
The coronavirus disease 2019 (COVID-19) pandemic brought stringent social distancing measures, resulting in changes to daily routines such as increased time at home, remote learning, altered meal schedules, and reduced physical activity. Therefore, we aimed to investigate the impact of the COVID-19 lockdown on glycemic control among pediatric patients with type 1 diabetes.
Methods:
This study retrospectively analyzed the medical records of 47 pediatric patients with type 1 diabetes who visited Ajou University Hospital before and after the lockdown. To analyze the effects of the lockdown on glycemic control, we examined the change in glycated hemoglobin (HbA1c) levels before and after the lockdown.
Results:
Among 47 patients, 23 (49%) were female and the average age before the lockdown as of March 2020 was 11.65±3.03 years. The mean HbA1c levels were 8.22%±1.69% and 7.86%±1.57% before and after the lockdown, respectively, showing better glycemic control during the lockdown (P=0.001). The decrease in HbA1c was more significant in subjects with higher pre-lockdown HbA1c levels, older patients, and individuals not using continuous glucose monitoring or continuous subcutaneous insulin infusion. However, from a long-term perspective, HbA1c levels at 3 years and 1 year before and after the lockdown were not significantly different.
Conclusion
This study demonstrated the beneficial effect of intensive social distancing for COVID-19 on blood glucose control in pediatric patients with type 1 diabetes mellitus. Furthermore, changes due to the lockdown had a more pronounced effect on patients with existing poor glycemic control.
3.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
4.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
5.Impact of COVID-19 lockdown on blood glucose levels in pediatric patients with type 1 diabetes mellitus
Min Hyung CHO ; Young Suk SHIM ; Hae Sang LEE
Annals of Pediatric Endocrinology & Metabolism 2025;30(1):25-30
Purpose:
The coronavirus disease 2019 (COVID-19) pandemic brought stringent social distancing measures, resulting in changes to daily routines such as increased time at home, remote learning, altered meal schedules, and reduced physical activity. Therefore, we aimed to investigate the impact of the COVID-19 lockdown on glycemic control among pediatric patients with type 1 diabetes.
Methods:
This study retrospectively analyzed the medical records of 47 pediatric patients with type 1 diabetes who visited Ajou University Hospital before and after the lockdown. To analyze the effects of the lockdown on glycemic control, we examined the change in glycated hemoglobin (HbA1c) levels before and after the lockdown.
Results:
Among 47 patients, 23 (49%) were female and the average age before the lockdown as of March 2020 was 11.65±3.03 years. The mean HbA1c levels were 8.22%±1.69% and 7.86%±1.57% before and after the lockdown, respectively, showing better glycemic control during the lockdown (P=0.001). The decrease in HbA1c was more significant in subjects with higher pre-lockdown HbA1c levels, older patients, and individuals not using continuous glucose monitoring or continuous subcutaneous insulin infusion. However, from a long-term perspective, HbA1c levels at 3 years and 1 year before and after the lockdown were not significantly different.
Conclusion
This study demonstrated the beneficial effect of intensive social distancing for COVID-19 on blood glucose control in pediatric patients with type 1 diabetes mellitus. Furthermore, changes due to the lockdown had a more pronounced effect on patients with existing poor glycemic control.
6.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
7.Impact of COVID-19 lockdown on blood glucose levels in pediatric patients with type 1 diabetes mellitus
Min Hyung CHO ; Young Suk SHIM ; Hae Sang LEE
Annals of Pediatric Endocrinology & Metabolism 2025;30(1):25-30
Purpose:
The coronavirus disease 2019 (COVID-19) pandemic brought stringent social distancing measures, resulting in changes to daily routines such as increased time at home, remote learning, altered meal schedules, and reduced physical activity. Therefore, we aimed to investigate the impact of the COVID-19 lockdown on glycemic control among pediatric patients with type 1 diabetes.
Methods:
This study retrospectively analyzed the medical records of 47 pediatric patients with type 1 diabetes who visited Ajou University Hospital before and after the lockdown. To analyze the effects of the lockdown on glycemic control, we examined the change in glycated hemoglobin (HbA1c) levels before and after the lockdown.
Results:
Among 47 patients, 23 (49%) were female and the average age before the lockdown as of March 2020 was 11.65±3.03 years. The mean HbA1c levels were 8.22%±1.69% and 7.86%±1.57% before and after the lockdown, respectively, showing better glycemic control during the lockdown (P=0.001). The decrease in HbA1c was more significant in subjects with higher pre-lockdown HbA1c levels, older patients, and individuals not using continuous glucose monitoring or continuous subcutaneous insulin infusion. However, from a long-term perspective, HbA1c levels at 3 years and 1 year before and after the lockdown were not significantly different.
Conclusion
This study demonstrated the beneficial effect of intensive social distancing for COVID-19 on blood glucose control in pediatric patients with type 1 diabetes mellitus. Furthermore, changes due to the lockdown had a more pronounced effect on patients with existing poor glycemic control.
8.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
9.Association of malnutrition status with 30-day mortality in patients with sepsis using objective nutritional indices: a multicenter retrospective study in South Korea
Moon Seong BAEK ; Young Suk KWON ; Sang Soo KANG ; Daechul SHIM ; Youngsang YOON ; Jong Ho KIM
Acute and Critical Care 2024;39(1):127-137
The Controlling Nutritional Status (CONUT) score and the prognostic nutritional index (PNI) have emerged as important nutritional indices because they provide an objective assessment based on data. We aimed to investigate how these nutritional indices relate to outcomes in patients with sepsis. Methods: Data were collected retrospectively at five hospitals for patients aged ≥18 years receiving treatment for sepsis between January 1, 2017, and December 31, 2021. Serum albumin and total cholesterol concentrations, and peripheral lymphocytes were used to calculate the CONUT score and PNI. To identify predictors correlated with 30-day mortality, analyses were conducted using univariate and multivariate Cox proportional hazards models. Results: The 30-day mortality rate among 9,763 patients was 15.8% (n=1,546). The median CONUT score was 5 (interquartile range [IQR], 3–7) and the median PNI score was 39.6 (IQR, 33.846.4). Higher 30-day mortality rates were associated with individuals with moderate (CONUT score: 5–8; PNI: 35–38) or severe (CONUT: 9–12; PNI: <35) malnutrition compared with those with no malnutrition (CONUT: 0–1; PNI: >38). With CONUT scores, the hazard ratio (HR) associated with moderate malnutrition was 1.52 (95% confidence interval [CI], 1.24–1.87; P<0.001); for severe, HR=2.42 (95% CI, 1.95–3.02; P<0.001). With PNI scores, the HR for moderate malnutrition was 1.29 (95% CI, 1.09–1.53; P=0.003); for severe, HR=1.88 (95% CI, 1.67–2.12; P<0.001). Conclusions: The nutritional indices CONUT score and PNI showed significant associations with mortality of sepsis patients within 30 days.
10.Association of malnutrition status with 30-day mortality in patients with sepsis using objective nutritional indices: a multicenter retrospective study in South Korea
Moon Seong BAEK ; Young Suk KWON ; Sang Soo KANG ; Daechul SHIM ; Youngsang YOON ; Jong Ho KIM
Acute and Critical Care 2024;39(1):127-137
The Controlling Nutritional Status (CONUT) score and the prognostic nutritional index (PNI) have emerged as important nutritional indices because they provide an objective assessment based on data. We aimed to investigate how these nutritional indices relate to outcomes in patients with sepsis. Methods: Data were collected retrospectively at five hospitals for patients aged ≥18 years receiving treatment for sepsis between January 1, 2017, and December 31, 2021. Serum albumin and total cholesterol concentrations, and peripheral lymphocytes were used to calculate the CONUT score and PNI. To identify predictors correlated with 30-day mortality, analyses were conducted using univariate and multivariate Cox proportional hazards models. Results: The 30-day mortality rate among 9,763 patients was 15.8% (n=1,546). The median CONUT score was 5 (interquartile range [IQR], 3–7) and the median PNI score was 39.6 (IQR, 33.846.4). Higher 30-day mortality rates were associated with individuals with moderate (CONUT score: 5–8; PNI: 35–38) or severe (CONUT: 9–12; PNI: <35) malnutrition compared with those with no malnutrition (CONUT: 0–1; PNI: >38). With CONUT scores, the hazard ratio (HR) associated with moderate malnutrition was 1.52 (95% confidence interval [CI], 1.24–1.87; P<0.001); for severe, HR=2.42 (95% CI, 1.95–3.02; P<0.001). With PNI scores, the HR for moderate malnutrition was 1.29 (95% CI, 1.09–1.53; P=0.003); for severe, HR=1.88 (95% CI, 1.67–2.12; P<0.001). Conclusions: The nutritional indices CONUT score and PNI showed significant associations with mortality of sepsis patients within 30 days.

Result Analysis
Print
Save
E-mail