1.Establishing a Cre/loxP-based genetic manipulation system for Acanthamoeba: Targeted genome editing and stable reporter expression
Ja Moon AUNG ; So-Young JOO ; Byoung-Kuk NA ; Seunghyeok BANG ; Minsang SHIN ; Youn-Kyoung GOO ; Yeonchul HONG
Parasites, Hosts and Diseases 2025;63(1):25-36
Acanthamoeba is an opportunistic pathogen responsible for granulomatous amoebic encephalitis and amoebic keratitis. Despite its clinical significance, effective treatments remain challenging due to a limited understanding of its pathogenic mechanism. This study developed a genetic manipulation system in Acanthamoeba to facilitate gene function and drug screening studies. We applied the Cre/loxP system to integrate the gene encoding the tdTomato fluorescent protein into the genome of Acanthamoeba castellanii via homologous recombination. The polyubiquitin gene and its untranslated regions were identified and verified, after which the tdTomato gene was cloned between the untranslated regions of the polyubiquitin gene. The construct was then introduced into the Acanthamoeba genome using a modified pLPBLP vector containing loxP sites. Cre recombinase was utilized to remove the neomycin resistance cassette flanked by loxP sites, and genetically modified cells were selected by clonal dilution. The integration of the tdTomato gene, confirmed through PCR and fluorescence microscopy, showed stable expression in both trophozoites and cysts without the need for antibiotic selection. We demonstrated the feasibility of antibiotic-free reporter gene expression in Acanthamoeba. The system provides a valuable tool for functional genomics, allowing us to explore gene functions in Acanthamoeba and develop reliable drug screening models. Furthermore, the ability to express genes without the continuous use of selection markers opens up new possibilities for studying the pathobiology of this pathogen and advancing the development of novel therapeutic strategies against Acanthamoeba infections.
2.Establishing a Cre/loxP-based genetic manipulation system for Acanthamoeba: Targeted genome editing and stable reporter expression
Ja Moon AUNG ; So-Young JOO ; Byoung-Kuk NA ; Seunghyeok BANG ; Minsang SHIN ; Youn-Kyoung GOO ; Yeonchul HONG
Parasites, Hosts and Diseases 2025;63(1):25-36
Acanthamoeba is an opportunistic pathogen responsible for granulomatous amoebic encephalitis and amoebic keratitis. Despite its clinical significance, effective treatments remain challenging due to a limited understanding of its pathogenic mechanism. This study developed a genetic manipulation system in Acanthamoeba to facilitate gene function and drug screening studies. We applied the Cre/loxP system to integrate the gene encoding the tdTomato fluorescent protein into the genome of Acanthamoeba castellanii via homologous recombination. The polyubiquitin gene and its untranslated regions were identified and verified, after which the tdTomato gene was cloned between the untranslated regions of the polyubiquitin gene. The construct was then introduced into the Acanthamoeba genome using a modified pLPBLP vector containing loxP sites. Cre recombinase was utilized to remove the neomycin resistance cassette flanked by loxP sites, and genetically modified cells were selected by clonal dilution. The integration of the tdTomato gene, confirmed through PCR and fluorescence microscopy, showed stable expression in both trophozoites and cysts without the need for antibiotic selection. We demonstrated the feasibility of antibiotic-free reporter gene expression in Acanthamoeba. The system provides a valuable tool for functional genomics, allowing us to explore gene functions in Acanthamoeba and develop reliable drug screening models. Furthermore, the ability to express genes without the continuous use of selection markers opens up new possibilities for studying the pathobiology of this pathogen and advancing the development of novel therapeutic strategies against Acanthamoeba infections.
3.Clinical Profiles of Multidrug-Resistant and Rifampicin-Monoresistant Tuberculosis in Korea, 2018–2021: A Nationwide Cross-Sectional Study
Jinsoo MIN ; Yousang KO ; Hyung Woo KIM ; Hyeon-Kyoung KOO ; Jee Youn OH ; Doosoo JEON ; Taehoon LEE ; Young-Chul KIM ; Sung Chul LIM ; Sung Soon LEE ; Jae Seuk PARK ; Ju Sang KIM
Tuberculosis and Respiratory Diseases 2025;88(1):159-169
Background:
This study aimed to identify the clinical characteristics of multidrug-resistant/ rifampicin-resistant tuberculosis (MDR/RR-TB) in the Republic of Korea.
Methods:
Data of notified people with tuberculosis between July 2018 and December 2021 were retrieved from the Korea Tuberculosis Cohort database. MDR/RR-TB was further categorized according to isoniazid susceptibility as follows: multidrug-resistant tuberculosis (MDR-TB), rifampicin-monoresistant tuberculosis (RMR-TB), and RR-TB if susceptibility to isoniazid was unknown. Multivariable logistic regression analysis was conducted to identify the factors associated with MDR/RR-TB.
Results:
Between 2018 and 2021, the proportion of MDR/RR-TB cases among all TB cases and TB cases with known drug susceptibility test results was 2.1% (502/24,447). The proportions of MDR/RR-TB and MDR-TB cases among TB cases with known drug susceptibility test results were 3.3% (502/15,071) and 1.9% (292/15,071), respectively. Among all cases of rifampicin resistance, 31.7% (159/502) were RMR-TB and 10.2% (51/502) were RR-TB. Multivariable logistic regression analyses revealed that younger age, foreigners, and prior tuberculosis history were significantly associated with MDR/ RR-TB.
Conclusion
Rapid identification of rifampicin resistance targeting the high-risk populations, such as younger generations, foreign-born individuals, and previously treated patients are necessary for patient-centered care.
4.Clinical Profiles of Multidrug-Resistant and Rifampicin-Monoresistant Tuberculosis in Korea, 2018–2021: A Nationwide Cross-Sectional Study
Jinsoo MIN ; Yousang KO ; Hyung Woo KIM ; Hyeon-Kyoung KOO ; Jee Youn OH ; Doosoo JEON ; Taehoon LEE ; Young-Chul KIM ; Sung Chul LIM ; Sung Soon LEE ; Jae Seuk PARK ; Ju Sang KIM
Tuberculosis and Respiratory Diseases 2025;88(1):159-169
Background:
This study aimed to identify the clinical characteristics of multidrug-resistant/ rifampicin-resistant tuberculosis (MDR/RR-TB) in the Republic of Korea.
Methods:
Data of notified people with tuberculosis between July 2018 and December 2021 were retrieved from the Korea Tuberculosis Cohort database. MDR/RR-TB was further categorized according to isoniazid susceptibility as follows: multidrug-resistant tuberculosis (MDR-TB), rifampicin-monoresistant tuberculosis (RMR-TB), and RR-TB if susceptibility to isoniazid was unknown. Multivariable logistic regression analysis was conducted to identify the factors associated with MDR/RR-TB.
Results:
Between 2018 and 2021, the proportion of MDR/RR-TB cases among all TB cases and TB cases with known drug susceptibility test results was 2.1% (502/24,447). The proportions of MDR/RR-TB and MDR-TB cases among TB cases with known drug susceptibility test results were 3.3% (502/15,071) and 1.9% (292/15,071), respectively. Among all cases of rifampicin resistance, 31.7% (159/502) were RMR-TB and 10.2% (51/502) were RR-TB. Multivariable logistic regression analyses revealed that younger age, foreigners, and prior tuberculosis history were significantly associated with MDR/ RR-TB.
Conclusion
Rapid identification of rifampicin resistance targeting the high-risk populations, such as younger generations, foreign-born individuals, and previously treated patients are necessary for patient-centered care.
5.Establishing a Cre/loxP-based genetic manipulation system for Acanthamoeba: Targeted genome editing and stable reporter expression
Ja Moon AUNG ; So-Young JOO ; Byoung-Kuk NA ; Seunghyeok BANG ; Minsang SHIN ; Youn-Kyoung GOO ; Yeonchul HONG
Parasites, Hosts and Diseases 2025;63(1):25-36
Acanthamoeba is an opportunistic pathogen responsible for granulomatous amoebic encephalitis and amoebic keratitis. Despite its clinical significance, effective treatments remain challenging due to a limited understanding of its pathogenic mechanism. This study developed a genetic manipulation system in Acanthamoeba to facilitate gene function and drug screening studies. We applied the Cre/loxP system to integrate the gene encoding the tdTomato fluorescent protein into the genome of Acanthamoeba castellanii via homologous recombination. The polyubiquitin gene and its untranslated regions were identified and verified, after which the tdTomato gene was cloned between the untranslated regions of the polyubiquitin gene. The construct was then introduced into the Acanthamoeba genome using a modified pLPBLP vector containing loxP sites. Cre recombinase was utilized to remove the neomycin resistance cassette flanked by loxP sites, and genetically modified cells were selected by clonal dilution. The integration of the tdTomato gene, confirmed through PCR and fluorescence microscopy, showed stable expression in both trophozoites and cysts without the need for antibiotic selection. We demonstrated the feasibility of antibiotic-free reporter gene expression in Acanthamoeba. The system provides a valuable tool for functional genomics, allowing us to explore gene functions in Acanthamoeba and develop reliable drug screening models. Furthermore, the ability to express genes without the continuous use of selection markers opens up new possibilities for studying the pathobiology of this pathogen and advancing the development of novel therapeutic strategies against Acanthamoeba infections.
6.Clinical Profiles of Multidrug-Resistant and Rifampicin-Monoresistant Tuberculosis in Korea, 2018–2021: A Nationwide Cross-Sectional Study
Jinsoo MIN ; Yousang KO ; Hyung Woo KIM ; Hyeon-Kyoung KOO ; Jee Youn OH ; Doosoo JEON ; Taehoon LEE ; Young-Chul KIM ; Sung Chul LIM ; Sung Soon LEE ; Jae Seuk PARK ; Ju Sang KIM
Tuberculosis and Respiratory Diseases 2025;88(1):159-169
Background:
This study aimed to identify the clinical characteristics of multidrug-resistant/ rifampicin-resistant tuberculosis (MDR/RR-TB) in the Republic of Korea.
Methods:
Data of notified people with tuberculosis between July 2018 and December 2021 were retrieved from the Korea Tuberculosis Cohort database. MDR/RR-TB was further categorized according to isoniazid susceptibility as follows: multidrug-resistant tuberculosis (MDR-TB), rifampicin-monoresistant tuberculosis (RMR-TB), and RR-TB if susceptibility to isoniazid was unknown. Multivariable logistic regression analysis was conducted to identify the factors associated with MDR/RR-TB.
Results:
Between 2018 and 2021, the proportion of MDR/RR-TB cases among all TB cases and TB cases with known drug susceptibility test results was 2.1% (502/24,447). The proportions of MDR/RR-TB and MDR-TB cases among TB cases with known drug susceptibility test results were 3.3% (502/15,071) and 1.9% (292/15,071), respectively. Among all cases of rifampicin resistance, 31.7% (159/502) were RMR-TB and 10.2% (51/502) were RR-TB. Multivariable logistic regression analyses revealed that younger age, foreigners, and prior tuberculosis history were significantly associated with MDR/ RR-TB.
Conclusion
Rapid identification of rifampicin resistance targeting the high-risk populations, such as younger generations, foreign-born individuals, and previously treated patients are necessary for patient-centered care.
7.Establishing a Cre/loxP-based genetic manipulation system for Acanthamoeba: Targeted genome editing and stable reporter expression
Ja Moon AUNG ; So-Young JOO ; Byoung-Kuk NA ; Seunghyeok BANG ; Minsang SHIN ; Youn-Kyoung GOO ; Yeonchul HONG
Parasites, Hosts and Diseases 2025;63(1):25-36
Acanthamoeba is an opportunistic pathogen responsible for granulomatous amoebic encephalitis and amoebic keratitis. Despite its clinical significance, effective treatments remain challenging due to a limited understanding of its pathogenic mechanism. This study developed a genetic manipulation system in Acanthamoeba to facilitate gene function and drug screening studies. We applied the Cre/loxP system to integrate the gene encoding the tdTomato fluorescent protein into the genome of Acanthamoeba castellanii via homologous recombination. The polyubiquitin gene and its untranslated regions were identified and verified, after which the tdTomato gene was cloned between the untranslated regions of the polyubiquitin gene. The construct was then introduced into the Acanthamoeba genome using a modified pLPBLP vector containing loxP sites. Cre recombinase was utilized to remove the neomycin resistance cassette flanked by loxP sites, and genetically modified cells were selected by clonal dilution. The integration of the tdTomato gene, confirmed through PCR and fluorescence microscopy, showed stable expression in both trophozoites and cysts without the need for antibiotic selection. We demonstrated the feasibility of antibiotic-free reporter gene expression in Acanthamoeba. The system provides a valuable tool for functional genomics, allowing us to explore gene functions in Acanthamoeba and develop reliable drug screening models. Furthermore, the ability to express genes without the continuous use of selection markers opens up new possibilities for studying the pathobiology of this pathogen and advancing the development of novel therapeutic strategies against Acanthamoeba infections.
8.Clinical Profiles of Multidrug-Resistant and Rifampicin-Monoresistant Tuberculosis in Korea, 2018–2021: A Nationwide Cross-Sectional Study
Jinsoo MIN ; Yousang KO ; Hyung Woo KIM ; Hyeon-Kyoung KOO ; Jee Youn OH ; Doosoo JEON ; Taehoon LEE ; Young-Chul KIM ; Sung Chul LIM ; Sung Soon LEE ; Jae Seuk PARK ; Ju Sang KIM
Tuberculosis and Respiratory Diseases 2025;88(1):159-169
Background:
This study aimed to identify the clinical characteristics of multidrug-resistant/ rifampicin-resistant tuberculosis (MDR/RR-TB) in the Republic of Korea.
Methods:
Data of notified people with tuberculosis between July 2018 and December 2021 were retrieved from the Korea Tuberculosis Cohort database. MDR/RR-TB was further categorized according to isoniazid susceptibility as follows: multidrug-resistant tuberculosis (MDR-TB), rifampicin-monoresistant tuberculosis (RMR-TB), and RR-TB if susceptibility to isoniazid was unknown. Multivariable logistic regression analysis was conducted to identify the factors associated with MDR/RR-TB.
Results:
Between 2018 and 2021, the proportion of MDR/RR-TB cases among all TB cases and TB cases with known drug susceptibility test results was 2.1% (502/24,447). The proportions of MDR/RR-TB and MDR-TB cases among TB cases with known drug susceptibility test results were 3.3% (502/15,071) and 1.9% (292/15,071), respectively. Among all cases of rifampicin resistance, 31.7% (159/502) were RMR-TB and 10.2% (51/502) were RR-TB. Multivariable logistic regression analyses revealed that younger age, foreigners, and prior tuberculosis history were significantly associated with MDR/ RR-TB.
Conclusion
Rapid identification of rifampicin resistance targeting the high-risk populations, such as younger generations, foreign-born individuals, and previously treated patients are necessary for patient-centered care.
9.Establishing a Cre/loxP-based genetic manipulation system for Acanthamoeba: Targeted genome editing and stable reporter expression
Ja Moon AUNG ; So-Young JOO ; Byoung-Kuk NA ; Seunghyeok BANG ; Minsang SHIN ; Youn-Kyoung GOO ; Yeonchul HONG
Parasites, Hosts and Diseases 2025;63(1):25-36
Acanthamoeba is an opportunistic pathogen responsible for granulomatous amoebic encephalitis and amoebic keratitis. Despite its clinical significance, effective treatments remain challenging due to a limited understanding of its pathogenic mechanism. This study developed a genetic manipulation system in Acanthamoeba to facilitate gene function and drug screening studies. We applied the Cre/loxP system to integrate the gene encoding the tdTomato fluorescent protein into the genome of Acanthamoeba castellanii via homologous recombination. The polyubiquitin gene and its untranslated regions were identified and verified, after which the tdTomato gene was cloned between the untranslated regions of the polyubiquitin gene. The construct was then introduced into the Acanthamoeba genome using a modified pLPBLP vector containing loxP sites. Cre recombinase was utilized to remove the neomycin resistance cassette flanked by loxP sites, and genetically modified cells were selected by clonal dilution. The integration of the tdTomato gene, confirmed through PCR and fluorescence microscopy, showed stable expression in both trophozoites and cysts without the need for antibiotic selection. We demonstrated the feasibility of antibiotic-free reporter gene expression in Acanthamoeba. The system provides a valuable tool for functional genomics, allowing us to explore gene functions in Acanthamoeba and develop reliable drug screening models. Furthermore, the ability to express genes without the continuous use of selection markers opens up new possibilities for studying the pathobiology of this pathogen and advancing the development of novel therapeutic strategies against Acanthamoeba infections.
10.Clinical Profiles of Multidrug-Resistant and Rifampicin-Monoresistant Tuberculosis in Korea, 2018–2021: A Nationwide Cross-Sectional Study
Jinsoo MIN ; Yousang KO ; Hyung Woo KIM ; Hyeon-Kyoung KOO ; Jee Youn OH ; Doosoo JEON ; Taehoon LEE ; Young-Chul KIM ; Sung Chul LIM ; Sung Soon LEE ; Jae Seuk PARK ; Ju Sang KIM
Tuberculosis and Respiratory Diseases 2025;88(1):159-169
Background:
This study aimed to identify the clinical characteristics of multidrug-resistant/ rifampicin-resistant tuberculosis (MDR/RR-TB) in the Republic of Korea.
Methods:
Data of notified people with tuberculosis between July 2018 and December 2021 were retrieved from the Korea Tuberculosis Cohort database. MDR/RR-TB was further categorized according to isoniazid susceptibility as follows: multidrug-resistant tuberculosis (MDR-TB), rifampicin-monoresistant tuberculosis (RMR-TB), and RR-TB if susceptibility to isoniazid was unknown. Multivariable logistic regression analysis was conducted to identify the factors associated with MDR/RR-TB.
Results:
Between 2018 and 2021, the proportion of MDR/RR-TB cases among all TB cases and TB cases with known drug susceptibility test results was 2.1% (502/24,447). The proportions of MDR/RR-TB and MDR-TB cases among TB cases with known drug susceptibility test results were 3.3% (502/15,071) and 1.9% (292/15,071), respectively. Among all cases of rifampicin resistance, 31.7% (159/502) were RMR-TB and 10.2% (51/502) were RR-TB. Multivariable logistic regression analyses revealed that younger age, foreigners, and prior tuberculosis history were significantly associated with MDR/ RR-TB.
Conclusion
Rapid identification of rifampicin resistance targeting the high-risk populations, such as younger generations, foreign-born individuals, and previously treated patients are necessary for patient-centered care.

Result Analysis
Print
Save
E-mail