1.Permanent Congenital Hypothyroidism in Very Low Birth Weight Infants: A Single Center’s Experience
Joo Hyung ROH ; Tae-Gyeong KIM ; Keon Hee SEOL ; Chae Young KIM ; Soo Hyun KIM ; Ji Yoon JEONG ; Ja Hye KIM ; Euiseok JUNG ; Jin-Ho CHOI ; Byong Sop LEE
Neonatal Medicine 2025;32(1):30-38
		                        		
		                        			 Purpose:
		                        			Congenital hypothyroidism (CH) is a major preventable cause of intellectual disability, particularly in very low birth weight (VLBW) infants, who are at increased risk due to hypothalamic-pituitary-thyroid axis immaturity. Early differentiation between transient CH (TCH) and permanent CH (PCH) is crucial to optimize L-thyroxine (LT4) treatment duration. This study aimed to determine the incidence of PCH among Korean VLBW infants and to identify clinical factors that may aid in distinguishing TCH from PCH. 
		                        		
		                        			Methods:
		                        			This retrospective cohort study included VLBW infants diagnosed with CH and treated with LT4 at a single tertiary neonatal intensive care unit between 2011 and 2020. Infants requiring LT4 beyond 3 years were classified as PCH, while those who discontinued earlier were considered TCH. Clinical characteristics, neonatal morbidities, and thyroid-related parameters were compared between the groups. 
		                        		
		                        			Results:
		                        			Among 1,292 VLBW infants, 122 (9.4%) were diagnosed with CH. After excluding deaths and those lost to follow-up, 73 infants were included in the final analysis (TCH, n=50; PCH, n=23). The PCH group had a significantly higher mean gestational age and greater LT4 requirements at both 12 and 36 months of age. Major anomalies were more frequently observed in PCH infants, including congenital heart defects. In multivariate analysis, higher gestational age, the presence of major anomalies, screening thyroid-stimulating hormone (TSH) >10 μIU/mL, and higher LT4 dose at 36 months were significantly associated with PCH. 
		                        		
		                        			Conclusion
		                        			The incidence of PCH in Korean VLBW infants was relatively higher than that reported in previous studies studies. Screening TSH level and LT4 dose requirements may support individualized follow-up and help distinguish PCH from TCH. 
		                        		
		                        		
		                        		
		                        	
2.Permanent Congenital Hypothyroidism in Very Low Birth Weight Infants: A Single Center’s Experience
Joo Hyung ROH ; Tae-Gyeong KIM ; Keon Hee SEOL ; Chae Young KIM ; Soo Hyun KIM ; Ji Yoon JEONG ; Ja Hye KIM ; Euiseok JUNG ; Jin-Ho CHOI ; Byong Sop LEE
Neonatal Medicine 2025;32(1):30-38
		                        		
		                        			 Purpose:
		                        			Congenital hypothyroidism (CH) is a major preventable cause of intellectual disability, particularly in very low birth weight (VLBW) infants, who are at increased risk due to hypothalamic-pituitary-thyroid axis immaturity. Early differentiation between transient CH (TCH) and permanent CH (PCH) is crucial to optimize L-thyroxine (LT4) treatment duration. This study aimed to determine the incidence of PCH among Korean VLBW infants and to identify clinical factors that may aid in distinguishing TCH from PCH. 
		                        		
		                        			Methods:
		                        			This retrospective cohort study included VLBW infants diagnosed with CH and treated with LT4 at a single tertiary neonatal intensive care unit between 2011 and 2020. Infants requiring LT4 beyond 3 years were classified as PCH, while those who discontinued earlier were considered TCH. Clinical characteristics, neonatal morbidities, and thyroid-related parameters were compared between the groups. 
		                        		
		                        			Results:
		                        			Among 1,292 VLBW infants, 122 (9.4%) were diagnosed with CH. After excluding deaths and those lost to follow-up, 73 infants were included in the final analysis (TCH, n=50; PCH, n=23). The PCH group had a significantly higher mean gestational age and greater LT4 requirements at both 12 and 36 months of age. Major anomalies were more frequently observed in PCH infants, including congenital heart defects. In multivariate analysis, higher gestational age, the presence of major anomalies, screening thyroid-stimulating hormone (TSH) >10 μIU/mL, and higher LT4 dose at 36 months were significantly associated with PCH. 
		                        		
		                        			Conclusion
		                        			The incidence of PCH in Korean VLBW infants was relatively higher than that reported in previous studies studies. Screening TSH level and LT4 dose requirements may support individualized follow-up and help distinguish PCH from TCH. 
		                        		
		                        		
		                        		
		                        	
3.Association Between Childhood Trauma and Anhedonia-Related Symptoms: The Mediation Role of Trait Anhedonia and Circulating Proteins
Sang Jin RHEE ; Dongyoon SHIN ; Daun SHIN ; Yoojin SONG ; Eun-Jeong JOO ; Hee Yeon JUNG ; Sungwon ROH ; Sang-Hyuk LEE ; Hyeyoung KIM ; Minji BANG ; Kyu Young LEE ; Jihyeon LEE ; Yeongshin KIM ; Youngsoo KIM ; Yong Min AHN
Journal of Korean Medical Science 2025;40(18):e66-
		                        		
		                        			 Background:
		                        			Though accumulating evidence suggests an association between childhood trauma and anhedonia, further analysis is needed to consider specific traumatic dimensions, both traits and state anhedonia, and the role of circulating proteins. Therefore, this study investigated the association between different types of childhood traumas and their influence on anhedonia-related symptoms, and to evaluate the influence of anhedonia traits and plasma proteins as mediators. 
		                        		
		                        			Methods:
		                        			This study included 170 patients with schizophrenia, bipolar disorder, major depressive disorder, and healthy controls aged 19–65 years. Multiple reaction monitoring was performed to quantify plasma proteins, and 464 proteins were analyzed. The association between childhood trauma dimensions, anhedonic traits, and related symptoms was analyzed with linear regression. A series of mediation analyses was performed to determine whether anhedonic traits and plasma proteins mediated the association between childhood trauma and anhedonia-related symptoms. 
		                        		
		                        			Results:
		                        			Childhood emotional neglect was significantly associated with anhedonic traits and anhedonia-related symptoms. Mediation analysis revealed that the indirect effect of anhedonic traits for childhood emotional neglect on anhedonia-related symptoms (effect = 0.037; bias-corrected CI, 0.009 to 0.070) was statistically significant. The indirect effect of plasma TNR5 for anhedonic traits on anhedonia-related symptoms was statistically significant (effect = −0.011; bias-corrected CI, −0.026 to −0.002). Serial mediation analysis revealed that the indirect effect of childhood emotional neglect on anhedonia-related symptoms via anhedonic traits and TNR5 was statistically significant (effect = 0.007; biascorrected CI, 0.001 to 0.017). 
		                        		
		                        			Conclusion
		                        			Anhedonic traits and plasma TNR5 protein levels serially mediated the association between childhood emotional neglect and anhedonia-related symptoms.The study highlights the importance of considering both psychopathological traits and biological correlates when investigating the association between childhood trauma and psychopathological symptoms. 
		                        		
		                        		
		                        		
		                        	
4.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
		                        		
		                        			 Objective:
		                        			To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI. 
		                        		
		                        			Materials and Methods:
		                        			This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed. 
		                        		
		                        			Results:
		                        			Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29). 
		                        		
		                        			Conclusion
		                        			Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification. 
		                        		
		                        		
		                        		
		                        	
5.No difference in inflammatory mediator expression between mast cell-rich and mast cell-poor rosacea lesions in Korean patients: a comparative study
Jin Ju LEE ; Bo Ram KWON ; Min Young LEE ; Ji Yeon BYUN ; Joo Young ROH ; Hae Young CHOI ; You Won CHOI
The Ewha Medical Journal 2025;48(1):e78-
6.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
		                        		
		                        			 Purpose:
		                        			Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS. 
		                        		
		                        			Materials and Methods:
		                        			This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches. 
		                        		
		                        			Results:
		                        			TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making. 
		                        		
		                        			Conclusion
		                        			TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment. 
		                        		
		                        		
		                        		
		                        	
7.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
		                        		
		                        			 Objective:
		                        			To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI. 
		                        		
		                        			Materials and Methods:
		                        			This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed. 
		                        		
		                        			Results:
		                        			Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29). 
		                        		
		                        			Conclusion
		                        			Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification. 
		                        		
		                        		
		                        		
		                        	
8.No difference in inflammatory mediator expression between mast cell-rich and mast cell-poor rosacea lesions in Korean patients: a comparative study
Jin Ju LEE ; Bo Ram KWON ; Min Young LEE ; Ji Yeon BYUN ; Joo Young ROH ; Hae Young CHOI ; You Won CHOI
The Ewha Medical Journal 2025;48(1):e78-
9.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
		                        		
		                        			 Objective:
		                        			To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI. 
		                        		
		                        			Materials and Methods:
		                        			This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed. 
		                        		
		                        			Results:
		                        			Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29). 
		                        		
		                        			Conclusion
		                        			Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification. 
		                        		
		                        		
		                        		
		                        	
10.Permanent Congenital Hypothyroidism in Very Low Birth Weight Infants: A Single Center’s Experience
Joo Hyung ROH ; Tae-Gyeong KIM ; Keon Hee SEOL ; Chae Young KIM ; Soo Hyun KIM ; Ji Yoon JEONG ; Ja Hye KIM ; Euiseok JUNG ; Jin-Ho CHOI ; Byong Sop LEE
Neonatal Medicine 2025;32(1):30-38
		                        		
		                        			 Purpose:
		                        			Congenital hypothyroidism (CH) is a major preventable cause of intellectual disability, particularly in very low birth weight (VLBW) infants, who are at increased risk due to hypothalamic-pituitary-thyroid axis immaturity. Early differentiation between transient CH (TCH) and permanent CH (PCH) is crucial to optimize L-thyroxine (LT4) treatment duration. This study aimed to determine the incidence of PCH among Korean VLBW infants and to identify clinical factors that may aid in distinguishing TCH from PCH. 
		                        		
		                        			Methods:
		                        			This retrospective cohort study included VLBW infants diagnosed with CH and treated with LT4 at a single tertiary neonatal intensive care unit between 2011 and 2020. Infants requiring LT4 beyond 3 years were classified as PCH, while those who discontinued earlier were considered TCH. Clinical characteristics, neonatal morbidities, and thyroid-related parameters were compared between the groups. 
		                        		
		                        			Results:
		                        			Among 1,292 VLBW infants, 122 (9.4%) were diagnosed with CH. After excluding deaths and those lost to follow-up, 73 infants were included in the final analysis (TCH, n=50; PCH, n=23). The PCH group had a significantly higher mean gestational age and greater LT4 requirements at both 12 and 36 months of age. Major anomalies were more frequently observed in PCH infants, including congenital heart defects. In multivariate analysis, higher gestational age, the presence of major anomalies, screening thyroid-stimulating hormone (TSH) >10 μIU/mL, and higher LT4 dose at 36 months were significantly associated with PCH. 
		                        		
		                        			Conclusion
		                        			The incidence of PCH in Korean VLBW infants was relatively higher than that reported in previous studies studies. Screening TSH level and LT4 dose requirements may support individualized follow-up and help distinguish PCH from TCH. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail