1.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part I. Initial Management of Differentiated Thyroid Cancers - Chapter 4. Pathological Diagnosis and Staging after Thyroidectomy 2024
Su-Jin SHIN ; Hee Young NA ; Ho-Cheol KANG ; Sun Wook KIM ; Dong Gyu NA ; Young Joo PARK ; Young Shin SONG ; Eun Kyung LEE ; Dong-Jun LIM ; Yun Jae CHUNG ; Chan Kwon JUNG ;
International Journal of Thyroidology 2024;17(1):61-67
		                        		
		                        			
		                        			 Postoperative pathological diagnosis of differentiated thyroid cancer (DTC) is important to confirm the diagnosis and predict the risk of recurrence and death. Further treatment plans, such as completion thyroidectomy, radioiodine remnant ablation, or external beam radiation therapy, are then opted for to reduce the predicted risk of recurrence or death. The World Health Organization has classified thyroid cancers into seven distinct categories based on the molecular profile and tumor cell origin. Our recommendation is applicable to differentiated follicular cell-derived carcinoma, the most common form of thyroid cancer, and cribriform morular thyroid carcinoma. Postoperative clinical and pathological staging is recommended for all patients with DTC to determine their prognosis and subsequent treatment decisions. In particular, the American Joint Committee on Cancer (AJCC)/Union for International Cancer Control (UICC) staging system is recommended for staging DTCs for disease mortality prediction and national cancer registries. The information in the pathology report, including histologic features of the tumor that are necessary for AJCC/UICC staging and recurrence prediction, can help assess the patient’s risk. 
		                        		
		                        		
		                        		
		                        	
2.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part IV. Thyroid Cancer during Pregnancy 2024
Hwa Young AHN ; Ho-Cheol KANG ; Mijin KIM ; Bo Hyun KIM ; Sun Wook KIM ; Won Gu KIM ; Hee Kyung KIM ; Dong Gyu NA ; Young Joo PARK ; Young Shin SONG ; Dong Yeob SHIN ; Jee Hee YOON ; Dong-Jun LIM ; Yun Jae CHUNG ; Kwanhoon JO ; Yoon Young CHO ; A Ram HONG ; Eun Kyung LEE ;
International Journal of Thyroidology 2024;17(1):188-192
		                        		
		                        			
		                        			 The prevalence of thyroid cancer in pregnant women is unknown; however, given that thyroid cancer commonly develops in women, especially young women of childbearing age, new cases are often diagnosed during pregnancy. This recommendation summarizes the follow-up and treatment when thyroid cancer is diagnosed during pregnancy and when a woman with thyroid cancer becomes pregnant. If diagnosed in the first trimester, surgery should be postponed until after delivery, and the patient should be monitored with ultrasound. If follow-up before 24–26 weeks of gestation shows that thyroid cancer has progressed, surgery should be considered. If it has not progressed at 24–26 weeks of gestation or if papillary thyroid cancer is diagnosed after 20 weeks of pregnancy, surgery should be considered after delivery. 
		                        		
		                        		
		                        		
		                        	
3.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part I. Initial Management of Differentiated Thyroid Cancers - Chapter 5. Evaluation of Recurrence Risk Postoperatively and Initial Risk Stratification in Differentiated Thyroid Cancer 2024
Eun Kyung LEE ; Young Shin SONG ; Ho-Cheol KANG ; Sun Wook KIM ; Dong Gyu NA ; Shin Je MOON ; Dong-Jun LIM ; Kyong Yeun JUNG ; Yun Jae CHUNG ; Chan Kwon JUNG ; Young Joo PARK ;
International Journal of Thyroidology 2024;17(1):68-96
		                        		
		                        			
		                        			 The American Joint Committee on Cancer/Union for International Cancer Control (AJCC/UICC) staging classification of thyroid cancer can predict death but cannot determine the type and frequency of follow-up testing. Risk stratification is a concept proposed by the American Thyroid Association that uses additional prognostic factors that are not included in the AJCC/UICC classification, such as number or size of metastatic lymph nodes, genetic mutations, and vascular invasion in follicular cancer, to further refine the prognosis of thyroid cancer. The risk of recurrence was categorized as low, intermediate, and high risk, and the need for total thyroidectomy, radioiodine therapy, or thyroid-stimulating hormone suppression was determined depending on each risk level. This approach has been accepted worldwide, and the previous recommendations of the Korean Thyroid Association followed a similar line of thinking but these have been modified in the revised 2024 guidelines.For the revised initial risk stratification, after careful review of the results of the recent meta-analyses and large observational studies and after a multidisciplinary meeting, four major changes were made: 1) thyroid cancer was reclassified according to the World Health Organization (WHO) 2022 tumor classification system; 2) recurrence risk was stratified by combining encapsulated follicular variant papillary thyroid cancer, follicular thyroid cancer, and oncocytic thyroid cancer, which have similar recurrence risk and associated factors, into follicular-patterned tumor; 3) low-risk groups were defined as those with a known recurrence rate of ≤5%, high-risk groups were upgraded to those with a known recurrence rate of ≥30%, and intermediate-risk groups were those with a recurrence risk of 5–30%; and 4) the intermediate risk group had the recurrence rate presented according to various clinicopathological factors, mainly based on reports from Korea. Thus, it is recommended to evaluate the initial risk group by predicting the recurrence rate by combining each clinical factor in individual patients, rather than applying the recurrence rate caused by single risk factor. 
		                        		
		                        		
		                        		
		                        	
4.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part I. Initial Management of Differentiated Thyroid Cancers - Chapter 1. Preoperative Imaging and Diagnostic Evaluation in Thyroid Cancer 2024
Ji Ye LEE ; Kwanhoon JO ; Ho-Cheol KANG ; Sun Wook KIM ; Young Joo PARK ; Ji-In BANG ; Young Shin SONG ; Min Kyoung LEE ; Eun Kyung LEE ; Dong-Jun LIM ; Yun Jae CHUNG ; Sang-Woo LEE ; Dong Gyu NA ;
International Journal of Thyroidology 2024;17(1):21-29
		                        		
		                        			
		                        			 The selected treatment for a nodule that is diagnosed as thyroid cancer is surgery. Imaging and blood tests are performed prior to surgery to determine the extent of the surgery. An Ultrasound (US) of the thyroid and neck should be performed to evaluate the size of the cancer, whether it is multifocal and has invaded surrounding tissues, and the status of the cervical lymph nodes (LNs). In addition to US, contrast-enhanced computed tomography may help detect cervical LN metastasis and evaluate patients suspected with invasive thyroid cancer.Generally, routine preoperative measurement of serum thyroglobulin and thyroglobulin antibody concentrations is not recommended. Integrated 18F-fluorodeoxyglucose positron-emission/computed tomography may be helpful either in patients with suspected lateral cervical LNs or distant metastasis or in patients with aggressive histology. 
		                        		
		                        		
		                        		
		                        	
5.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part I. Initial Management of Differentiated Thyroid Cancers - Chapter 7. Adjuvant External Beam Radiotherapy and Systemic Chemotherapy Following Thyroidectomy 2024
Shin Je MOON ; Ho-Cheol KANG ; Sun Wook KIM ; Won Gu KIM ; Dong Gyu NA ; Young Joo PARK ; Young Shin SONG ; Eun Kyung LEE ; Dong-Jun LIM ; Yun Jae CHUNG ; Dong Yeob SHIN ;
International Journal of Thyroidology 2024;17(1):111-114
		                        		
		                        			
		                        			 Surgical resection is typically the primary treatment for differentiated thyroid cancer (DTC), followed by radioactive iodine (RAI) and thyroid-stimulating hormone suppression therapies based on the cancer stage and risk of recurrence. Nevertheless, further treatment may be necessary for patients exhibiting persistent disease following RAI therapy, residual disease refractory to RAI, or unresectable locoregional lesions. This guideline discusses the role of external beam radiotherapy and chemotherapy following surgical resection in patients with DTC. External beam radiotherapy is ineffective if DTC has been entirely excised (Grade 2). Adjuvant external beam radiotherapy may be optionally performed in patients with incomplete surgical resection or frequently recurrent disease (Grade 2). In patients at high risk of recurrence following surgery and RAI therapy, adjuvant external beam radiotherapy may be optionally considered (Grade 3). However, external beam radiotherapy may increase the risk of serious adverse events after tyrosine kinase inhibitor therapy. Therefore, careful consideration is needed when prescribing external beam radiotherapy for patients planning to undergo tyrosine kinase inhibitor therapy. There is no evidence supporting the benefits of the routine use of adjuvant chemotherapy for DTC treatment (Grade 2). 
		                        		
		                        		
		                        		
		                        	
6.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part III. Management of Advanced Differentiated Thyroid Cancers - Chapter 5.Treatment of Metastatic Lesions in Advanced Differentiated Thyroid Carcinoma 2024
Kyong Yeun JUNG ; Youngduk SEO ; Ho-Cheol KANG ; Sun Wook KIM ; Dong Gyu NA ; Young Joo PARK ; Young Shin SONG ; Dong Yeob SHIN ; Sang-Woo LEE ; Eun Kyung LEE ; Dong-Jun LIM ; Yun Jae CHUNG ; Won Gu KIM ;
International Journal of Thyroidology 2024;17(1):182-187
		                        		
		                        			
		                        			 Only a small percentage of patients (2-5%) with differentiated thyroid cancer (DTC) exhibit distant metastasis at the initial diagnosis or during the disease course. The most common metastatic sites of DTC are the lungs, followed by the bones. Radioactive iodine (RAI) therapy is considered the primary treatment for RAI-avid distant metastatic DTC. Depending on the characteristics of metastatic lesions, local treatment such as surgical resection, radiofrequency ablation, and external beam radiation therapy may be considered for some patients with metastatic DTC. Slowly growing and asymptomatic metastases can be monitored with follow-up while receiving thyroid-stimulating hormone (TSH) suppression therapy. In patients with a limited number of lung metastases and good performance status, surgical removal of the metastatic lesions may be considered. Systemic therapy should be considered for patients with progressive RAI refractory DTC. In this clinical guideline, we aim to outline the treatment principles for patients with lung, bone, and brain metastases of DTC. 
		                        		
		                        		
		                        		
		                        	
7.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part III. Management of Advanced Differentiated Thyroid Cancers - Chapter 1-2. Locally Recurred/Persistent Thyroid Cancer Management Strategies 2024
Ho-Ryun WON ; Min Kyoung LEE ; Ho-Cheol KANG ; Bon Seok KOO ; Hyungju KWON ; Sun Wook KIM ; Won Woong KIM ; Jung-Han KIM ; Young Joo PARK ; Jun-Ook PARK ; Young Shin SONG ; Seung Hoon WOO ; Chang Hwan RYU ; Eun Kyung LEE ; Joon-Hyop LEE ; Ji Ye LEE ; Cho Rok LEE ; Dong-Jun LIM ; Jae-Yol LIM ; Yun Jae CHUNG ; Kyorim BACK ; Dong Gyu NA ;
International Journal of Thyroidology 2024;17(1):147-152
		                        		
		                        			
		                        			 These guidelines aim to establish the standard practice for diagnosing and treating patients with differentiated thyroid cancer (DTC). Based on the Korean Thyroid Association (KTA) Guidelines on DTC management, the “Treatment of Advanced DTC” section was revised in 2024 and has been provided through this chapter. Especially, this chapter covers surgical and nonsurgical treatments for the local (previous surgery site) or regional (cervical lymph node metastasis) recurrences. After drafting the guidelines, it was finalized by collecting opinions from KTA members and related societies. Surgical resection is the preferred treatment for local or regional recurrence of advanced DTC. If surgical resection is not possible, nonsurgical resection treatment under ultrasonography guidance may be considered as an alternative treatment for local or regional recurrence of DTC. Furthermore, if residual lesions are suspected even after surgical resection or respiratory-digestive organ invasion, additional radioactive iodine and external radiation treatments are considered. 
		                        		
		                        		
		                        		
		                        	
8.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part I. Initial Management of Differentiated Thyroid Cancers - Chapter 3. Perioperative Assessment of Surgical Complications 2024
Chang Hwan RYU ; Ho-Cheol KANG ; Bon Seok KOO ; Sun Wook KIM ; Dong Gyu NA ; Young Joo PARK ; Jun-Ook PARK ; Young Shin SONG ; Seung Hoon WOO ; Ho-Ryun WON ; Sihoon LEE ; Eun Kyung LEE ; Dong-Jun LIM ; Yun Kyung JEON ; Yun Jae CHUNG ; Jae-Yol LIM ; A Ram HONG ;
International Journal of Thyroidology 2024;17(1):53-60
		                        		
		                        			
		                        			 Thyroid surgery complications include voice change, vocal fold paralysis, and hypoparathyroidism. The voice status should be evaluated pre- and post-surgery. In patients with voice change, laryngeal visualization is needed.Intraoperative neuromonitoring helps reduce recurrent laryngeal nerve injury. The measurement of serum calcium, parathyroid hormone, and 25-hydroxyvitamin D levels is recommended to evaluate perioperative parathyroid function and prescribe supplementation preoperatively if necessary. For postoperative hypoparathyroidism, vitamin D and oral calcium supplementation are indicated based on serum parathyroid hormone and calcium levels and the severity of symptoms or signs of hypocalcemia. If long-term treatment is required, the appropriateness of treatment should be evaluated based on the disease itself and the consideration of potential benefits and harms from long-term replacement. 
		                        		
		                        		
		                        		
		                        	
9.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part III. Management of Advanced Differentiated Thyroid Cancers - Chapter 4. Systemic Therapy for Progressive Radioiodine-Refractory Differentiated Thyroid Cancer 2024
Dong Yeob SHIN ; Ho-Cheol KANG ; Sun Wook KIM ; Dong Gyu NA ; Young Joo PARK ; Young Shin SONG ; Eun Kyung LEE ; Dong-Jun LIM ; Yun Jae CHUNG ; Won Gu KIM ;
International Journal of Thyroidology 2024;17(1):168-181
		                        		
		                        			
		                        			 The primary treatment for differentiated thyroid cancer (DTC) with distant metastasis is high-dose radioactive iodine (RAI) therapy, which can have various effects depending on the iodine uptake of thyroid cancer cells. The iodine uptake of metastatic lesions decreases over time, and approximately 40-70% of patients eventually develop RAI refractory disease. Although the prognosis of patients with RAI refractory DTC is very poor, clinical outcomes vary depending on the location and progression of metastatic lesions. Therefore, it is crucial to determine which patients should receive active systemic therapy with tyrosine kinase inhibitor (TKI) and how to apply local treatment before or during systemic therapy. This guideline covers the definition, treatment principles, systemic anticancer agents, and complications of progressive RAI-refractory DTC. RAI refractory DTC is defined as (1) the absence of RAI uptake on whole body scan, (2) presence of RAI uptake in some lesions but not in others, or (3) disease progression despite RAI uptake. Treatment options for RAI refractory DTC include surgery, external beam radiation therapy, locoregional therapies such as high-intensity focused ultrasound ablation, and systemic anticancer therapy.In patients with minimal symptoms and progression, active surveillance without specific treatment may be considered. Systemic treatment should be considered for patients with multiple progressive lesions by RECIST criteria. Furthermore, testing for cancer gene mutations, including BRAF, NTRK, and RET genes, is recommended for personalized therapy. Systemic therapy should be decided based on shared decision-making between the patient and specialist, considering anticipated benefits and risks. Regular assessment of treatment responses and evaluation of adverse events is essential, with dose adjustment based on these assessments. The optimal time of use, clinical approaches for the prevention and control of adverse events, and individualized treatment approaches based on patient characteristics will be of great help in the treatment of patients with RAI-refractory DTC. 
		                        		
		                        		
		                        		
		                        	
10.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part I. Initial Management of Differentiated Thyroid Cancers - Chapter 6. Radioactive Iodine Treatment after Thyroidectomy 2024
Sohyun PARK ; Ari CHONG ; Ho-Cheol KANG ; Keunyoung KIM ; Sun Wook KIM ; Dong Gyu NA ; Young Joo PARK ; Ji-In BANG ; Youngduk SEO ; Young Shin SONG ; So Won OH ; Eun Kyung LEE ; Dong-Jun LIM ; Yun Jae CHUNG ; Chae Moon HONG ; Sang-Woo LEE ;
International Journal of Thyroidology 2024;17(1):97-110
		                        		
		                        			
		                        			 The initial treatment for differentiated thyroid cancer includes appropriate surgery and radioactive iodine (RAI) therapy, followed by thyroid-stimulating hormone (TSH) suppression therapy as long-term management to prevent recurrence. RAI therapy following thyroidectomy has the three main purposes: remnant ablation, adjuvant therapy, and therapy for known disease. To optimize the goals and targets of RAI therapy, postoperative disease assessment, determination of recurrence risk, and consideration of various individual factors are necessary. The objectives of RAI therapy are determined based on the individual’s recurrence risk, and the administered activity of RAI is then determined according to these treatment objectives. Adequate stimulation of serum TSH is necessary before RAI therapy, and recombinant human TSH is widely used because of its advantage in reducing the risk of exacerbation of comorbidities associated with levothyroxine discontinuation and improving patients’ quality of life. Additionally, reducing iodine intake through appropriate low-iodine diet is necessary. Whole-body scans are conducted to assess the disease status after RAI therapy. If planar whole-body scans are inconclusive, additional single-photon emission computed tomography (SPECT)/CT imaging is recommended. Over the past decade, prospective randomized or retrospective clinical studies on the selection of candidates for RAI therapy, administered activity, methods of TSH stimulation, and advantages of SPECT/CT have been published. Based on these latest clinical research findings and recommendations from relevant overseas medical societies, this clinical practice guideline presents the indications and methods for administering RAI therapy after thyroidectomy. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail