1.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
2.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
3.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
4.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
5.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
6.Regional differences in protein intake and protein sources of Korean older adults and their association with metabolic syndrome using the 2016–2019 Korea National Health and Nutrition Examination Surveys:a cross-sectional study
Korean Journal of Community Nutrition 2024;29(3):173-188
Objectives:
The study aim was to analyze the regional differences in dietary protein intake and protein sources of Korean older adults and their association with metabolic syndrome.
Methods:
Study participants were 1,721 older adults aged 65 and over who participated in 2016–2019 Korea National Health and Nutrition Examination Survey. Using 24-hour recall dietary intake data, protein intake and their food sources were examined. The association between protein intake and metabolic syndrome, obesity, and abdominal obesity were analyzed by multiple logistic regression.
Results:
Total protein and animal protein intakes were higher in urban area (60.0 g, 24.4 g, respectively) than in rural area (54.6 g, 19.6 g, respectively). With increase of protein intake level, animal to total protein proportion was increased in both areas. Total protein and plant protein intake was negatively associated with the risk of obesity, abdominal obesity in both areas. Animal protein intake was negatively associated with the risk of obesity in both areas, and with abdominal obesity only in urban area. In urban area, plant protein intake was also negatively associated with the risks of metabolic syndrome, elevated triglyceride, and reduced high density lipoprotein-cholesterol. In urban area, the risk of metabolic syndrome was decreased when their protein intake was more than 0.91 g/kg and was lowest when their protein intake was more than 1.5 g/kg (P for trend < 0.001).
Conclusions
Korean older adults showed inadequate protein intake and those in rural area showed lower animal protein intake than in urban area. The risk of obesity and metabolic syndrome was decreased with the increase of protein intake level. These findings may help develop effective nutrition support strategy for older adults to reduce regional health disparity.
7.Changes in nutritional status of Korean older adults during COVID-19 Pandemic by household income and demographic factors -using the Korea National Health and Nutrition Examination Survey(2019-2020): a cross-sectional study
Korean Journal of Community Nutrition 2023;28(4):302-316
Objectives:
The study aim was to identify changes in the nutritional status of older adults during the COVID-19 pandemic according to household income and demographic characteristics.
Methods:
Study participants were 2,408 adults aged 65 and over who participated in the 2019–2020 Korea National Health and Nutrition Examination Survey (KNHANES). To examine changes in nutrient intake levels resulting from COVID-19, data of 2019 and of 2020 were compared. Study participants were divided into three groups based on household income level to compare these changes. The changes were compared according to household income level, age group, and household type.
Results:
Percentages of recommended intakes for energy, protein, and most micronutrients were the lowest for the low-income group of both males and females in 2020. The Mean Adequacy Ratio (MAR) score was the lowest for the low-income group in both years. When comparing nutrient density for 2019 and 2020 by income group, the male low-income group experienced a decrease in nutrient densities of vitamin A, thiamine, calcium, and iron. For the same group, a decreased percentage for energy intake from protein was noted. Fruit intake was lowest in the low-income group for both males and females. Low-income males had the lowest intake levels for meat, fish, eggs, and legumes in both 2019 and 2020 and the lowest milk and milk product intake levels in 2020. Older adults living alone or single older adults with children had lower MAR scores than those living with a spouse. Older adults living alone experienced decreases in energy and thiamine and iron intake levels in 2020 compared to their intake levels in 2019.
Conclusions
Because of the COVID-19 pandemic, nutrition intake levels worsened for older adult males in the low-income group and older adults living alone. This finding shows the need for a more systematic nutritional support strategy for the vulnerable older adults population in national disaster situations.
8.Comparison of the Nutrient Intake and Health Status of Elderly Koreans According to their BMI Status: Focus on the Underweight Elderly Population
Korean Journal of Community Nutrition 2022;27(5):422-434
Objectives:
With an increase in the population of the elderly in Korea, their nutritional status has become a cause for concern. This study was designed to compare the nutritional intake and health status of the Korean elderly according to their body mass index.
Methods:
The subjects were 3,274 elderly people aged 65 and above who had participated in the 2016-2018 Korea National Health and Nutrition Examination Survey. The subjects were divided into four groups: underweight, normal, overweight, and obese, based on their BMI. The general characteristics, daily energy, and nutrient intakes, nutrient intakes compared to the recommended nutrient intake, percentage of participants whose nutrient intake was lower than the estimated average requirement (EAR), index of nutrient quality, the mean adequacy ratio (MAR), intakes by food group, and health status of the four groups were compared.
Results:
Underweight elderly people showed lower energy, lipids, dietary fiber, vitamin C, riboflavin, niacin, phosphorus, sodium, and potassium intake and MAR score (P < 0.001) compared to the normal or obese elderly. The mean protein, riboflavin, niacin, vitamin C, phosphorus, and iron intake of the underweight elderly was lower than the EAR (P < 0.05). Underweight elderly people also had a lower intake of vegetables and fats, oil and sweets food groups than the other groups (P < 0.001). The prevalence of diabetes and dyslipidemia was higher in the obese group, but the percentage of anemia was higher in the underweight group.
Conclusions
Underweight elderly people were vulnerable to undernutrition and were at a higher risk of anemia.
9.Age- and Sex-Related Differential Associations between Body Composition and Diabetes Mellitus
Eun ROH ; Soon Young HWANG ; Jung A KIM ; You-Bin LEE ; So-hyeon HONG ; Nam Hoon KIM ; Ji A SEO ; Sin Gon KIM ; Nan Hee KIM ; Kyung Mook CHOI ; Sei Hyun BAIK ; Hye Jin YOO
Diabetes & Metabolism Journal 2021;45(2):183-194
The age- and sex-related differences on the impacts of body composition on diabetes mellitus (DM) remain uncertain. The fourth and fifth Korea National Health and Nutrition Examination Survey included 15,586 subjects over 30 years of age who completed dual-energy X-ray absorptiometry. We conducted a cross-sectional study to investigate whether muscle mass index (MMI), defined as appendicular skeletal muscle divided by body mass index (BMI), and fat mass index (FMI), defined as trunk fat mass divided by BMI, were differently associated with DM according to age and sex. In multivariate logistic regression, the risk for DM significantly increased across quartiles of FMI in men aged ≥70. Meanwhile, MMI showed a protective association with DM in men of the same age. The odds ratios (ORs) for the highest quartile versus the lowest quartile of FMI and MMI were 3.116 (95% confidence interval [CI], 1.405 to 6.914) and 0.295 (95% CI, 0.157 to 0.554), respectively. In women, the ORs of DM was significantly different across FMI quartiles in those over age 50. The highest quartile of FMI exhibited increased ORs of DM in subjects aged 50 to 69 (OR, 1.891; 95% CI, 1.229 to 2.908) and ≥70 (OR, 2.275; 95% CI, 1.103 to 4.69) compared to lowest quartile. However, MMI was not significantly associated with DM in women of all age groups. Both FMI and MMI were independent risk factors for DM in men aged 70 years or more. In women over 50 years, FMI was independently associated with DM. There was no significant association between MMI and DM in women.
10.Age- and Sex-Related Differential Associations between Body Composition and Diabetes Mellitus
Eun ROH ; Soon Young HWANG ; Jung A KIM ; You-Bin LEE ; So-hyeon HONG ; Nam Hoon KIM ; Ji A SEO ; Sin Gon KIM ; Nan Hee KIM ; Kyung Mook CHOI ; Sei Hyun BAIK ; Hye Jin YOO
Diabetes & Metabolism Journal 2021;45(2):183-194
The age- and sex-related differences on the impacts of body composition on diabetes mellitus (DM) remain uncertain. The fourth and fifth Korea National Health and Nutrition Examination Survey included 15,586 subjects over 30 years of age who completed dual-energy X-ray absorptiometry. We conducted a cross-sectional study to investigate whether muscle mass index (MMI), defined as appendicular skeletal muscle divided by body mass index (BMI), and fat mass index (FMI), defined as trunk fat mass divided by BMI, were differently associated with DM according to age and sex. In multivariate logistic regression, the risk for DM significantly increased across quartiles of FMI in men aged ≥70. Meanwhile, MMI showed a protective association with DM in men of the same age. The odds ratios (ORs) for the highest quartile versus the lowest quartile of FMI and MMI were 3.116 (95% confidence interval [CI], 1.405 to 6.914) and 0.295 (95% CI, 0.157 to 0.554), respectively. In women, the ORs of DM was significantly different across FMI quartiles in those over age 50. The highest quartile of FMI exhibited increased ORs of DM in subjects aged 50 to 69 (OR, 1.891; 95% CI, 1.229 to 2.908) and ≥70 (OR, 2.275; 95% CI, 1.103 to 4.69) compared to lowest quartile. However, MMI was not significantly associated with DM in women of all age groups. Both FMI and MMI were independent risk factors for DM in men aged 70 years or more. In women over 50 years, FMI was independently associated with DM. There was no significant association between MMI and DM in women.

Result Analysis
Print
Save
E-mail