1.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
2.Optimal tacrolimus levels for reducing CKD risk and the impact of intrapatient variability on CKD and ESRD development following liver transplantation
Soon Kyu LEE ; Ho Joong CHOI ; Young Kyoung YOU ; Pil Soo SUNG ; Seung Kew YOON ; Jeong Won JANG ; Jong Young CHOI
Clinical and Molecular Hepatology 2025;31(1):131-146
Background/Aims:
This study aimed to identify the risk factors for chronic kidney disease (CKD) and end-stage renal disease (ESRD) following liver transplantation (LT), with a specific focus on tacrolimus levels and intrapatient variability (IPV).
Methods:
Among the 1,076 patients who underwent LT between 2000 and 2018, 952 were included in the analysis. The tacrolimus doses and levels were recorded every 3 months, and the IPV was calculated using the coefficient of variability. The cumulative incidence rates of CKD and ESRD were calculated based on baseline kidney function at the time of LT. The impact of tacrolimus levels and their IPV on the development of CKD and ESRD was evaluated, and the significant risk factors were identified.
Results:
Within a median follow-up of 97.3 months, the 5-year cumulative incidence rates of CKD (0.58 vs. 0.24) and ESRD (0.07 vs. 0.01) were significantly higher in the acute kidney injury group than in the normal glomerular filtration rate (GFR) group. In the normal GFR group, the tacrolimus levels were identified as a risk factor for CKD, with a level of ≤4.5 ng/mL suggested as optimal for minimizing the risk of CKD. Furthermore, the IPV of tacrolimus levels and doses emerged as a significant risk factor for CKD development in both groups (p<0.05), with tenofovir disoproxil fumarate also being a risk factor in HBV-infected patients. The IPV of tacrolimus levels was also a significant factor in ESRD development (p<0.05).
Conclusions
This study elucidated the optimal tacrolimus trough level and highlighted the impact of IPV on the CKD and ESRD development post-LT.
3.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
4.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
5.Study on the Necessity and Methodology for Enhancing Outpatient and Clinical Education in the Department of Radiology
Soo Buem CHO ; Jiwoon SEO ; Young Hwan KIM ; You Me KIM ; Dong Gyu NA ; Jieun ROH ; Kyung-Hyun DO ; Jung Hwan BAEK ; Hye Shin AHN ; Min Woo LEE ; Seunghyun LEE ; Seung Eun JUNG ; Woo Kyoung JEONG ; Hye Doo JEONG ; Bum Sang CHO ; Hwan Jun JAE ; Seon Hyeong CHOI ; Saebeom HUR ; Su Jin HONG ; Sung Il HWANG ; Auh Whan PARK ; Ji-hoon KIM
Journal of the Korean Society of Radiology 2025;86(1):199-200
6.Optimal tacrolimus levels for reducing CKD risk and the impact of intrapatient variability on CKD and ESRD development following liver transplantation
Soon Kyu LEE ; Ho Joong CHOI ; Young Kyoung YOU ; Pil Soo SUNG ; Seung Kew YOON ; Jeong Won JANG ; Jong Young CHOI
Clinical and Molecular Hepatology 2025;31(1):131-146
Background/Aims:
This study aimed to identify the risk factors for chronic kidney disease (CKD) and end-stage renal disease (ESRD) following liver transplantation (LT), with a specific focus on tacrolimus levels and intrapatient variability (IPV).
Methods:
Among the 1,076 patients who underwent LT between 2000 and 2018, 952 were included in the analysis. The tacrolimus doses and levels were recorded every 3 months, and the IPV was calculated using the coefficient of variability. The cumulative incidence rates of CKD and ESRD were calculated based on baseline kidney function at the time of LT. The impact of tacrolimus levels and their IPV on the development of CKD and ESRD was evaluated, and the significant risk factors were identified.
Results:
Within a median follow-up of 97.3 months, the 5-year cumulative incidence rates of CKD (0.58 vs. 0.24) and ESRD (0.07 vs. 0.01) were significantly higher in the acute kidney injury group than in the normal glomerular filtration rate (GFR) group. In the normal GFR group, the tacrolimus levels were identified as a risk factor for CKD, with a level of ≤4.5 ng/mL suggested as optimal for minimizing the risk of CKD. Furthermore, the IPV of tacrolimus levels and doses emerged as a significant risk factor for CKD development in both groups (p<0.05), with tenofovir disoproxil fumarate also being a risk factor in HBV-infected patients. The IPV of tacrolimus levels was also a significant factor in ESRD development (p<0.05).
Conclusions
This study elucidated the optimal tacrolimus trough level and highlighted the impact of IPV on the CKD and ESRD development post-LT.
7.Study on the Necessity and Methodology for Enhancing Outpatient and Clinical Education in the Department of Radiology
Soo Buem CHO ; Jiwoon SEO ; Young Hwan KIM ; You Me KIM ; Dong Gyu NA ; Jieun ROH ; Kyung-Hyun DO ; Jung Hwan BAEK ; Hye Shin AHN ; Min Woo LEE ; Seunghyun LEE ; Seung Eun JUNG ; Woo Kyoung JEONG ; Hye Doo JEONG ; Bum Sang CHO ; Hwan Jun JAE ; Seon Hyeong CHOI ; Saebeom HUR ; Su Jin HONG ; Sung Il HWANG ; Auh Whan PARK ; Ji-hoon KIM
Journal of the Korean Society of Radiology 2025;86(1):199-200
8.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
9.Optimal tacrolimus levels for reducing CKD risk and the impact of intrapatient variability on CKD and ESRD development following liver transplantation
Soon Kyu LEE ; Ho Joong CHOI ; Young Kyoung YOU ; Pil Soo SUNG ; Seung Kew YOON ; Jeong Won JANG ; Jong Young CHOI
Clinical and Molecular Hepatology 2025;31(1):131-146
Background/Aims:
This study aimed to identify the risk factors for chronic kidney disease (CKD) and end-stage renal disease (ESRD) following liver transplantation (LT), with a specific focus on tacrolimus levels and intrapatient variability (IPV).
Methods:
Among the 1,076 patients who underwent LT between 2000 and 2018, 952 were included in the analysis. The tacrolimus doses and levels were recorded every 3 months, and the IPV was calculated using the coefficient of variability. The cumulative incidence rates of CKD and ESRD were calculated based on baseline kidney function at the time of LT. The impact of tacrolimus levels and their IPV on the development of CKD and ESRD was evaluated, and the significant risk factors were identified.
Results:
Within a median follow-up of 97.3 months, the 5-year cumulative incidence rates of CKD (0.58 vs. 0.24) and ESRD (0.07 vs. 0.01) were significantly higher in the acute kidney injury group than in the normal glomerular filtration rate (GFR) group. In the normal GFR group, the tacrolimus levels were identified as a risk factor for CKD, with a level of ≤4.5 ng/mL suggested as optimal for minimizing the risk of CKD. Furthermore, the IPV of tacrolimus levels and doses emerged as a significant risk factor for CKD development in both groups (p<0.05), with tenofovir disoproxil fumarate also being a risk factor in HBV-infected patients. The IPV of tacrolimus levels was also a significant factor in ESRD development (p<0.05).
Conclusions
This study elucidated the optimal tacrolimus trough level and highlighted the impact of IPV on the CKD and ESRD development post-LT.
10.Study on the Necessity and Methodology for Enhancing Outpatient and Clinical Education in the Department of Radiology
Soo Buem CHO ; Jiwoon SEO ; Young Hwan KIM ; You Me KIM ; Dong Gyu NA ; Jieun ROH ; Kyung-Hyun DO ; Jung Hwan BAEK ; Hye Shin AHN ; Min Woo LEE ; Seunghyun LEE ; Seung Eun JUNG ; Woo Kyoung JEONG ; Hye Doo JEONG ; Bum Sang CHO ; Hwan Jun JAE ; Seon Hyeong CHOI ; Saebeom HUR ; Su Jin HONG ; Sung Il HWANG ; Auh Whan PARK ; Ji-hoon KIM
Journal of the Korean Society of Radiology 2025;86(1):199-200

Result Analysis
Print
Save
E-mail