1.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
2.Artificial Intelligence-Based Early Prediction of Acute Respiratory Failure in the Emergency Department Using Biosignal and Clinical Data
Changho HAN ; Yun Jung JUNG ; Ji Eun PARK ; Wou Young CHUNG ; Dukyong YOON
Yonsei Medical Journal 2025;66(2):121-130
Purpose:
Early identification of patients at risk for acute respiratory failure (ARF) could help clinicians devise preventive strategies. Analyzing biosignals with artificial intelligence (AI) can uncover hidden information and variability within time series. We aimed to develop and validate AI models to predict ARF within 72 h after emergency department admission, primarily using highresolution biosignals collected within 4 h of arrival.
Materials and Methods:
Our AI model, built on convolutional recurrent neural networks, combines biosignal feature extraction and sequence modeling. The model was developed and internally validated with data from 5284 admissions [1085 (20.5%) positive for ARF], and externally validated using data from 144 admissions [7 (4.9%) positive for ARF] from another institution. We defined ARF as the application of advanced respiratory support devices.
Results:
Our AI model performed well in predicting ARF, achieving area under the receiver operating characteristic curve (AUROC) of 0.840 and 0.743 in internal and external validations, respectively. It outperformed the Modified Early Warning Score (MEWS) and XGBoost models built only with clinical variables. High predictive ability for mortality was observed, with AUROC up to 0.809. A 10% increase in AI prediction scores was associated with 1.44-fold and 1.42-fold increases in ARF risk and mortality risk, respectively, even after adjusting for MEWS and demographic variables.
Conclusion
Our AI model demonstrates high predictive accuracy and significant associations with clinical outcomes. Our AI model has the potential to promptly aid in triage decisions. Our study shows that using AI to analyze biosignals advances disease detection and prediction.
3.Comparison of tissue-based and plasma-based testing for EGFR mutation in non–small cell lung cancer patients
Yoon Kyung KANG ; Dong Hoon SHIN ; Joon Young PARK ; Chung Su HWANG ; Hyun Jung LEE ; Jung Hee LEE ; Jee Yeon KIM ; JooYoung NA
Journal of Pathology and Translational Medicine 2025;59(1):60-67
Background:
Epidermal growth factor receptor (EGFR) gene mutation testing is crucial for the administration of tyrosine kinase inhibitors to treat non–small cell lung cancer. In addition to traditional tissue-based tests, liquid biopsies using plasma are increasingly utilized, particularly for detecting T790M mutations. This study compared tissue- and plasma-based EGFR testing methods.
Methods:
A total of 248 patients were tested for EGFR mutations using tissue and plasma samples from 2018 to 2023 at Pusan National University Yangsan Hospital. Tissue tests were performed using PANAmutyper, and plasma tests were performed using the Cobas EGFR Mutation Test v2.
Results:
All 248 patients underwent tissue-based EGFR testing, and 245 (98.8%) showed positive results. Of the 408 plasma tests, 237 (58.1%) were positive. For the T790M mutation, tissue biopsies were performed 87 times in 69 patients, and 30 positive cases (38.6%) were detected. Plasma testing for the T790M mutation was conducted 333 times in 207 patients, yielding 62 positive results (18.6%). Of these, 57 (27.5%) were confirmed to have the mutation via plasma testing. Combined tissue and plasma tests for the T790M mutation were positive in nine patients (13.4%), while 17 (25.4%) were positive in tissue only and 12 (17.9%) in plasma only. This mutation was not detected in 28 patients (43.3%).
Conclusions
Although the tissue- and plasma-based tests showed a sensitivity of 37.3% and 32.8%, respectively, combined testing increased the detection rate to 56.7%. Thus, neither test demonstrated superiority, rather, they were complementary.
4.Hyperlipidemia and Rotator Cuff Tears: Exploring Mechanisms and Effective Treatment
Kang-San LEE ; Sung-Jin PARK ; Dong-Hyun KIM ; Seok Won CHUNG ; Jun-Young KIM ; Chul-Hyun CHO ; Jong Pil YOON
Clinics in Orthopedic Surgery 2025;17(2):187-193
The detrimental effects of hyperlipidemia on the healing of rotator cuff tears are well documented. The proposed underlying mechanisms for these effects include alterations in the extracellular matrix, inflammation, and oxidative stress, which hamper the reparative processes in the affected tendon tissues. Recent therapeutic strategies target these pathways, reflecting a growing body of research dedicated to mitigating these effects and promoting healing. This literature review aims to provide a comprehensive understanding of the pathophysiology underlying rotator cuff tears, examine the interplay between hyperlipidemia and rotator cuff tear healing, synthesize current knowledge on contributing biological mechanisms, and outline potential therapeutic interventions to optimize clinical management and treatment outcomes for patients.
5.Study Protocol of Expanded Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro-EXP)
Jae Hoon MOON ; Eun Kyung LEE ; Wonjae CHA ; Young Jun CHAI ; Sun Wook CHO ; June Young CHOI ; Sung Yong CHOI ; A Jung CHU ; Eun-Jae CHUNG ; Yul HWANGBO ; Woo-Jin JEONG ; Yuh-Seog JUNG ; Kyungsik KIM ; Min Joo KIM ; Su-jin KIM ; Woochul KIM ; Yoo Hyung KIM ; Chang Yoon LEE ; Ji Ye LEE ; Kyu Eun LEE ; Young Ki LEE ; Hunjong LIM ; Do Joon PARK ; Sue K. PARK ; Chang Hwan RYU ; Junsun RYU ; Jungirl SEOK ; Young Shin SONG ; Ka Hee YI ; Hyeong Won YU ; Eleanor WHITE ; Katerina MASTROCOSTAS ; Roderick J. CLIFTON-BLIGH ; Anthony GLOVER ; Matti L. GILD ; Ji-hoon KIM ; Young Joo PARK
Endocrinology and Metabolism 2025;40(2):236-246
Background:
Active surveillance (AS) has emerged as a viable management strategy for low-risk papillary thyroid microcarcinoma (PTMC), following pioneering trials at Kuma Hospital and the Cancer Institute Hospital in Japan. Numerous prospective cohort studies have since validated AS as a management option for low-risk PTMC, leading to its inclusion in thyroid cancer guidelines across various countries. From 2016 to 2020, the Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro) enrolled 1,177 patients, providing comprehensive data on PTMC progression, sonographic predictors of progression, quality of life, surgical outcomes, and cost-effectiveness when comparing AS to immediate surgery. The second phase of MAeSTro (MAeSTro-EXP) expands AS to low-risk papillary thyroid carcinoma (PTC) tumors larger than 1 cm, driven by the hypothesis that overall risk assessment outweighs absolute tumor size in surgical decision-making.
Methods:
This protocol aims to address whether limiting AS to tumors smaller than 1 cm may result in unnecessary surgeries for low-risk PTCs detected during their rapid initial growth phase. By expanding the AS criteria to include tumors up to 1.5 cm, while simultaneously refining and standardizing the criteria for risk assessment and disease progression, we aim to minimize overtreatment and maintain rigorous monitoring to improve patient outcomes.
Conclusion
This study will contribute to optimizing AS guidelines and enhance our understanding of the natural course and appropriate management of low-risk PTCs. Additionally, MAeSTro-EXP involves a multinational collaboration between South Korea and Australia. This cross-country study aims to identify cultural and racial differences in the management of low-risk PTC, thereby enriching the global understanding of AS practices and their applicability across diverse populations.
6.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
7.Artificial Intelligence-Based Early Prediction of Acute Respiratory Failure in the Emergency Department Using Biosignal and Clinical Data
Changho HAN ; Yun Jung JUNG ; Ji Eun PARK ; Wou Young CHUNG ; Dukyong YOON
Yonsei Medical Journal 2025;66(2):121-130
Purpose:
Early identification of patients at risk for acute respiratory failure (ARF) could help clinicians devise preventive strategies. Analyzing biosignals with artificial intelligence (AI) can uncover hidden information and variability within time series. We aimed to develop and validate AI models to predict ARF within 72 h after emergency department admission, primarily using highresolution biosignals collected within 4 h of arrival.
Materials and Methods:
Our AI model, built on convolutional recurrent neural networks, combines biosignal feature extraction and sequence modeling. The model was developed and internally validated with data from 5284 admissions [1085 (20.5%) positive for ARF], and externally validated using data from 144 admissions [7 (4.9%) positive for ARF] from another institution. We defined ARF as the application of advanced respiratory support devices.
Results:
Our AI model performed well in predicting ARF, achieving area under the receiver operating characteristic curve (AUROC) of 0.840 and 0.743 in internal and external validations, respectively. It outperformed the Modified Early Warning Score (MEWS) and XGBoost models built only with clinical variables. High predictive ability for mortality was observed, with AUROC up to 0.809. A 10% increase in AI prediction scores was associated with 1.44-fold and 1.42-fold increases in ARF risk and mortality risk, respectively, even after adjusting for MEWS and demographic variables.
Conclusion
Our AI model demonstrates high predictive accuracy and significant associations with clinical outcomes. Our AI model has the potential to promptly aid in triage decisions. Our study shows that using AI to analyze biosignals advances disease detection and prediction.
8.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
9.Artificial Intelligence-Based Early Prediction of Acute Respiratory Failure in the Emergency Department Using Biosignal and Clinical Data
Changho HAN ; Yun Jung JUNG ; Ji Eun PARK ; Wou Young CHUNG ; Dukyong YOON
Yonsei Medical Journal 2025;66(2):121-130
Purpose:
Early identification of patients at risk for acute respiratory failure (ARF) could help clinicians devise preventive strategies. Analyzing biosignals with artificial intelligence (AI) can uncover hidden information and variability within time series. We aimed to develop and validate AI models to predict ARF within 72 h after emergency department admission, primarily using highresolution biosignals collected within 4 h of arrival.
Materials and Methods:
Our AI model, built on convolutional recurrent neural networks, combines biosignal feature extraction and sequence modeling. The model was developed and internally validated with data from 5284 admissions [1085 (20.5%) positive for ARF], and externally validated using data from 144 admissions [7 (4.9%) positive for ARF] from another institution. We defined ARF as the application of advanced respiratory support devices.
Results:
Our AI model performed well in predicting ARF, achieving area under the receiver operating characteristic curve (AUROC) of 0.840 and 0.743 in internal and external validations, respectively. It outperformed the Modified Early Warning Score (MEWS) and XGBoost models built only with clinical variables. High predictive ability for mortality was observed, with AUROC up to 0.809. A 10% increase in AI prediction scores was associated with 1.44-fold and 1.42-fold increases in ARF risk and mortality risk, respectively, even after adjusting for MEWS and demographic variables.
Conclusion
Our AI model demonstrates high predictive accuracy and significant associations with clinical outcomes. Our AI model has the potential to promptly aid in triage decisions. Our study shows that using AI to analyze biosignals advances disease detection and prediction.
10.Evaluating Rituximab Failure Rates in Neuromyelitis Optica Spectrum Disorder: A Nationwide Real-World Study From South Korea
Su-Hyun KIM ; Ju-Hong MIN ; Sung-Min KIM ; Eun-Jae LEE ; Young-Min LIM ; Ha Young SHIN ; Young Nam KWON ; Eunhee SOHN ; Sooyoung KIM ; Min Su PARK ; Tai-Seung NAM ; Byeol-A YOON ; Jong Kuk KIM ; Kyong Jin SHIN ; Yoo Hwan KIM ; Jin Myoung SEOK ; Jeong Bin BONG ; Sohyeon KIM ; Hung Youl SEOK ; Sun-Young OH ; Ohyun KWON ; Sunyoung KIM ; Sukyoon LEE ; Nam-Hee KIM ; Eun Bin CHO ; Sa-Yoon KANG ; Seong-il OH ; Jong Seok BAE ; Suk-Won AHN ; Ki Hoon KIM ; You-Ri KANG ; Woohee JU ; Seung Ho CHOO ; Yeon Hak CHUNG ; Jae-Won HYUN ; Ho Jin KIM
Journal of Clinical Neurology 2025;21(2):131-136
Background:
and Purpose Treatments for neuromyelitis optica spectrum disorder (NMOSD) such as eculizumab, ravulizumab, satralizumab, and inebilizumab have significantly advanced relapse prevention, but they remain expensive. Rituximab is an off-label yet popular alternative that offers a cost-effective solution, but its real-world efficacy needs better quantification for guiding the application of newer approved NMOSD treatments (ANTs). This study aimed to determine real-world rituximab failure rates to anticipate the demand for ANTs and aid in resource allocation.
Methods:
We conducted a nationwide retrospective study involving 605 aquaporin-4-antibody-positive NMOSD patients from 22 centers in South Korea that assessed the efficacy and safety of rituximab over a median follow-up of 47 months.
Results:
The 605 patients treated with rituximab included 525 (87%) who received continuous therapy throughout the follow-up period (median=47 months, interquartile range=15–87 months). During this period, 117 patients (19%) experienced at least 1 relapse. Notably, 68 of these patients (11% of the total cohort) experienced multiple relapses or at least 1 severe relapse.Additionally, 2% of the patients discontinued rituximab due to adverse events, which included severe infusion reactions, neutropenia, and infections.
Conclusions
This study has confirmed the efficacy of rituximab in treating NMOSD, as evidenced by an 87% continuation rate among patients over a 4-year follow-up period. Nevertheless, the occurrence of at least one relapse in 19% of the cohort, including 11% who experienced multiple or severe relapses, and a 2% discontinuation rate due to adverse events highlight the urgent need for alternative therapeutic options.

Result Analysis
Print
Save
E-mail