1.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
2.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
3.An Analysis of Age-Related Body Composition Changes and Metabolic Patterns in Korean Adults Using FDG-PET/CT Health Screening Data
Chang-Myung OH ; Ji-In BANG ; Sang Yoon LEE ; Jae Kyung LEE ; Jee Won CHAI ; So Won OH
Diabetes & Metabolism Journal 2025;49(1):92-104
Background:
F-18-fluorodeoxyglucose positron emission tomography (FDG-PET)/computed tomography (CT) can be used to measure bone mineral density (BMD), cross-sectional muscle area (CSMA), Hounsfield units (HU) of liver and muscle, subcutaneous adipose tissue (SAT), abdominal visceral adipose tissue (VAT), and glucose metabolism. The present study aimed to identify age-related changes in body composition and glucose metabolism in Korean using opportunistic FDG-PET/CT imaging.
Methods:
We analyzed FDG-PET/CT, clinical history, and laboratory data abstracted from the medical records of patients who underwent health screening at a single institute between 2017 and 2022.
Results:
In total, 278 patients were included in the analysis (male:female=140:138). Age and body mass index were positively correlated in female, but negatively correlated in male. BMD decreased with age more in female, and CSMA decreased with age more in male. Muscle HU decreased with age for both sexes. In female, SAT and VAT increased with age; and in male, SAT decreased slightly while VAT remained stable. Muscle glucose metabolism showed no association with age in male but increased with age in female. CSMA correlated positively with BMD overall; and positively correlated with VAT and SAT in male only. In female only, both SAT and VAT showed negative correlations with glucose metabolism and correlated positively with muscle glucose metabolism. Liver HU values were inversely correlated with VAT, especially in female; and positively correlated with muscle glucose metabolism in female only.
Conclusion
FDG-PET/CT demonstrated distinct patterns of age-related changes in body composition and glucose metabolism, with significant differences between sexes.
4.Harnessing Institutionally Developed Clinical Targeted Sequencing to Improve Patient Survival in Breast Cancer: A Seven-Year Experience
Jiwon KOH ; Jinyong KIM ; Go-Un WOO ; Hanbaek YI ; So Yean KWON ; Jeongmin SEO ; Jeong Mo BAE ; Jung Ho KIM ; Jae Kyung WON ; Han Suk RYU ; Yoon Kyung JEON ; Dae-Won LEE ; Miso KIM ; Tae-Yong KIM ; Kyung-Hun LEE ; Tae-You KIM ; Jee-Soo LEE ; Moon-Woo SEONG ; Sheehyun KIM ; Sungyoung LEE ; Hongseok YUN ; Myung Geun SONG ; Jaeyong CHOI ; Jong-Il KIM ; Seock-Ah IM
Cancer Research and Treatment 2025;57(2):443-456
Purpose:
Considering the high disease burden and unique features of Asian patients with breast cancer (BC), it is essential to have a comprehensive view of genetic characteristics in this population. An institutional targeted sequencing platform was developed through the Korea Research-Driven Hospitals project and was incorporated into clinical practice. This study explores the use of targeted next-generation sequencing (NGS) and its outcomes in patients with advanced/metastatic BC in the real world.
Materials and Methods:
We reviewed the results of NGS tests administered to BC patients using a customized sequencing platform—FiRST Cancer Panel (FCP)—over 7 years. We systematically described clinical translation of FCP for precise diagnostics, personalized therapeutic strategies, and unraveling disease pathogenesis.
Results:
NGS tests were conducted on 548 samples from 522 patients with BC. Ninety-seven point six percentage of tested samples harbored at least one pathogenic alteration. The common alterations included mutations in TP53 (56.2%), PIK3CA (31.2%), GATA3 (13.8%), BRCA2 (10.2%), and amplifications of CCND1 (10.8%), FGF19 (10.0%), and ERBB2 (9.5%). NGS analysis of ERBB2 amplification correlated well with human epidermal growth factor receptor 2 immunohistochemistry and in situ hybridization. RNA panel analyses found potentially actionable and prognostic fusion genes. FCP effectively screened for potentially germline pathogenic/likely pathogenic mutation. Ten point three percent of BC patients received matched therapy guided by NGS, resulting in a significant overall survival advantage (p=0.022), especially for metastatic BCs.
Conclusion
Clinical NGS provided multifaceted benefits, deepening our understanding of the disease, improving diagnostic precision, and paving the way for targeted therapies. The concrete advantages of FCP highlight the importance of multi-gene testing for BC, especially for metastatic conditions.
5.The Survival and Financial Benefit of Investigator-Initiated Trials Conducted by Korean Cancer Study Group
Bum Jun KIM ; Chi Hoon MAENG ; Bhumsuk KEAM ; Young-Hyuck IM ; Jungsil RO ; Kyung Hae JUNG ; Seock-Ah IM ; Tae Won KIM ; Jae Lyun LEE ; Dae Seog HEO ; Sang-We KIM ; Keunchil PARK ; Myung-Ju AHN ; Byoung Chul CHO ; Hoon-Kyo KIM ; Yoon-Koo KANG ; Jae Yong CHO ; Hwan Jung YUN ; Byung-Ho NAM ; Dae Young ZANG
Cancer Research and Treatment 2025;57(1):39-46
Purpose:
The Korean Cancer Study Group (KCSG) is a nationwide cancer clinical trial group dedicated to advancing investigator-initiated trials (IITs) by conducting and supporting clinical trials. This study aims to review IITs conducted by KCSG and quantitatively evaluate the survival and financial benefits of IITs for patients.
Materials and Methods:
We reviewed IITs conducted by KCSG from 1998 to 2023, analyzing progression-free survival (PFS) and overall survival (OS) gains for participants. PFS and OS benefits were calculated as the difference in median survival times between the intervention and control groups, multiplied by the number of patients in the intervention group. Financial benefits were assessed based on the cost of investigational products provided.
Results:
From 1998 to 2023, KCSG conducted 310 IITs, with 133 completed and published. Of these, 21 were included in the survival analysis. The analysis revealed that 1,951 patients in the intervention groups gained a total of 2,558.4 months (213.2 years) of PFS and 2,501.6 months (208.5 years) of OS, with median gains of 1.31 months in PFS and 1.58 months in OS per patient. When analyzing only statistically significant results, PFS and OS gain per patients was 1.69 months and 3.02 months, respectively. Investigational drug cost analysis from six available IITs indicated that investigational products provided to 252 patients were valued at 10,400,077,294 won (approximately 8,046,481 US dollars), averaging about 41,270,148 won (approximately 31,930 US dollars) per patient.
Conclusion
Our findings, based on analysis of published research, suggest that IITs conducted by KCSG led to survival benefits for participants and, in some studies, may have provided financial benefits by providing investment drugs.
6.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
7.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
8.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
9.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
10.An Analysis of Age-Related Body Composition Changes and Metabolic Patterns in Korean Adults Using FDG-PET/CT Health Screening Data
Chang-Myung OH ; Ji-In BANG ; Sang Yoon LEE ; Jae Kyung LEE ; Jee Won CHAI ; So Won OH
Diabetes & Metabolism Journal 2025;49(1):92-104
Background:
F-18-fluorodeoxyglucose positron emission tomography (FDG-PET)/computed tomography (CT) can be used to measure bone mineral density (BMD), cross-sectional muscle area (CSMA), Hounsfield units (HU) of liver and muscle, subcutaneous adipose tissue (SAT), abdominal visceral adipose tissue (VAT), and glucose metabolism. The present study aimed to identify age-related changes in body composition and glucose metabolism in Korean using opportunistic FDG-PET/CT imaging.
Methods:
We analyzed FDG-PET/CT, clinical history, and laboratory data abstracted from the medical records of patients who underwent health screening at a single institute between 2017 and 2022.
Results:
In total, 278 patients were included in the analysis (male:female=140:138). Age and body mass index were positively correlated in female, but negatively correlated in male. BMD decreased with age more in female, and CSMA decreased with age more in male. Muscle HU decreased with age for both sexes. In female, SAT and VAT increased with age; and in male, SAT decreased slightly while VAT remained stable. Muscle glucose metabolism showed no association with age in male but increased with age in female. CSMA correlated positively with BMD overall; and positively correlated with VAT and SAT in male only. In female only, both SAT and VAT showed negative correlations with glucose metabolism and correlated positively with muscle glucose metabolism. Liver HU values were inversely correlated with VAT, especially in female; and positively correlated with muscle glucose metabolism in female only.
Conclusion
FDG-PET/CT demonstrated distinct patterns of age-related changes in body composition and glucose metabolism, with significant differences between sexes.

Result Analysis
Print
Save
E-mail