1.Establishment of HPLC fingerprint and content determination of Gerbera delavayi
Lisha SUN ; Li JIANG ; Li LI ; Lin TIAN ; Yang WANG ; Jie PAN ; Yueting LI ; Yongjun LI
China Pharmacy 2025;36(9):1052-1058
OBJECTIVE To establish the fingerprint of Gerbera delavayi and the methods for the content determination of 11 components in G. delavayi. METHODS High-performance liquid chromatography(HPLC)was adopted to establish the fingerprints of 13 batches of G. delavayi(No. S1-S13), and the similarities were evaluated according to Similarity Evaluation System of Chromatographic Fingerprint of TCM (2012 edition), while the common peaks were identified. Hierarchical clustering analysis (HCA), principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were carried out by using SPSS 25.0 software and SIMCA 14.1 software. The contents of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, 3,8-dihydroxy-4-methoxy-2-oxo-2H-1-benzopyran-5-carboxylic acid, caffeic acid, 3-hydroxy-4-methoxy-2- oxo-2H-1-benzopyran- 5-carboxylic acid, luteolin-7-O-β-D-glucoside, isochlorogenic acid A, apigenin-7-O-β-D-glucoside, isochlorogenic acid C and xanthotoxin were determined by HPLC. RESULTS The similarities in HPLC fingerprint of 13 batches of G. delavayi were 0.801-0.994; a total of 38 common peaks were identified and 13 common peaks were identified. The results of HCA showed that S1-S5 and S7 were clustered into one group, S6 into one category, S8 into one category, S9 and S11 into one category, S10, S12 and S13 into one category, and the results of PCA were consistent with them. The results of OPLS-DA showed that variable importance values for the projection of peak 7 (chlorogenic acid), peak 21 (isochlorogenic acid A), peak 26 (xanthotoxin), peak 19 (isochlorogenic acid B), peak 33, peak 13, peak 23 (isochlorogenic acid C), peak 2 (new chlorogenic acid), peak 17 (luteolin-7-O-β-D- glucoside) were greater than 1. The above 11 components had good linearity in their respective detection concentration ranges (r was greater than 0.999). RSDs of precision, repeatability, and stability tests were not more than 2% (n=6). The average recovery rates were 92.54%-105.55%, and the RSDs were 0.83%-1.93% (n=6). The average contents of 11 components were 0.744, 5.014, 0.646, 0.431, 0.069, 0.582, 0.979, 2.754, 0.157, 1.284 and 2.943 mg/g, respectively. CONCLUSIONS The constructed HPLC fingerprint and content determination methods are simple, accurate and stable, which can provide reference for quality control of G. delavayi. Xanthotoxin, chlorogenic acid, isochlorogenic acid A, luteolin-7-O- β -D-glucoside, isochlorogenic acid C and new chlorogenic acid can be used as markers for G. delavayi.
2.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
3.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
4.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
5.Mechanism of ginkgo flavonoid aglycone against doxorubicin-induced cardiotoxicity
Ying CAI ; Li QIAN ; Kailiang WANG ; Qin LI ; Chunhua LIU ; Jia SUN ; Jie PAN ; Yongjun LI ; Yuan LU
China Pharmacy 2024;35(6):659-664
OBJECTIVE To investigate the potential mechanism of the effect of ginkgo flavone aglycone (GA) against doxorubicin (DOX)-induced cardiotoxicity. METHODS The male ICR mice were randomized into control group (CON group), model group (DOX group) and GA+DOX group (GDOX group), with 12 mice in each group. The DOX group was injected with DOX solution at a dose of 3 mg/kg via tail vein every other day, and the GDOX group was given GA suspension intragastrically at a dose of 100 mg/kg every day+DOX solution at a dose of 3 mg/kg via tail vein every other day, for 15 consecutive days. After the end of administration, the serum levels of aspartate aminotransferase(AST), creatine kinase(CK), creatine kinase isoenzyme(CK- MB) and lactate dehydrogenase(LDH) in mice were detected in each group. Based on the metabolomics method, UHPLC-Q- Exactive Orbitrap HRMS method was used; based on principal component analysis (PCA) and orthogonal partial least squares- discriminant analysis (OPLS-DA), the differentially expressed metabolites (DEMs) were screened using the criteria of variable importance in the projection≥1, fold change of peak area>1 and P<0.05; biological analysis was conducted based on databases such as HMDB and PubChem. RESULTS Compared with CON group, serum levels of AST, CK, CK-MB and LDH were increased significantly in DOX group (P<0.05); compared with DOX group, the serum levels of the above indicators (except for CK-MB) were decreased significantly in GDOX group (P<0.05). PCA and OPLS-DA showed that myocardial tissue samples of CON group, DOX group and GDOX group were isolated completely. After database matching, 37 common DEMs were identified, among which 17 DEMs were significantly up-regulated in the DOX group and significantly down- regulated in the GDOX group, and 8 DEMs were significantly down-regulated in the DOX group and significantly up-regulated in the GDOX group; pathway enrichment involved the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, linoleic acid metabolism, taurine and hypotaurine metabolism; the key metabolites in the above pathways included docosahexaenoic acid, arachidonic acid, phosphatidylcholine (16∶0/18∶3) and taurine. CONCLUSIONS GA may regulate the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism and other metabolic pathways by acting on the core metabolites such as docosahexaenoic acid and arachidonic acid, thus alleviating the cardiotoxic effects of DOX.
6.Comparation and considerations for general notice between the Chinese Pharmacopoeia and the Japanese Pharmacopoeia
ZHU Jia ; LOU Yongjun ; PAN Fangfang ; GENG Xiaoting ; TANG Dengfeng ; SHANG Yue ; ZHENG Jinqi ; ZHENG Cheng ; TAO Qiaofeng
Drug Standards of China 2024;25(1):035-040
Objective: The characteristics and differences of the general notice between the Chinese Pharmacopoeia and the Japanese Pharmacopoeia were investigated to provide references and suggestions for the compilation of the Chinese Pharmacopoeia.
Methods: From the perspective of frame structure and main contents, the general notice between the Chinese Pharmacopoeia and the Japanese Pharmacopoeia was compared.
Results: Each volume of the Chinese Pharmacopoeia had its general notice, including 34 to 48 items and 10 to 12 chapters based on different varieties collected in each volume. The Japanese Pharmacopoeia had 49 items not arranged by chapters. There are many differences on the general notice between the Chinese Pharmacopoeia and the Japanese Pharmacopoeia, such as the definitions and expressions of names, determination of appearance, revision rules, risk assessment and quality control conception. The framework of the general notice in the Chinese Pharmacopoeia was clear, the content was specific and the operation was friendly. The term description of the general notice in the Japanese Pharmacopoeia was concise, and some terms need to be implemented under the guidance of professional knowledge.
Conclusion: In light of comparative study, every volume’s general notice of the Chinese Pharmacopoeia has its own characteristics. By integrating advanced analytical technique, combining the requirements with laws and regulations, and optimizing content and terms, all volume’s general notice could be explored to be coordinated and unified.
7.A heart sound segmentation method based on multi-feature fusion network
Pian TIAN ; Peiyu HE ; Jie CAI ; Qijun ZHAO ; Li LI ; Yongjun QIAN ; Fan PAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(05):672-681
Objective To propose a heart sound segmentation method based on multi-feature fusion network. Methods Data were obtained from the CinC/PhysioNet 2016 Challenge dataset (a total of 3 153 recordings from 764 patients, about 91.93% of whom were male, with an average age of 30.36 years). Firstly the features were extracted in time domain and time-frequency domain respectively, and reduced redundant features by feature dimensionality reduction. Then, we selected optimal features separately from the two feature spaces that performed best through feature selection. Next, the multi-feature fusion was completed through multi-scale dilated convolution, cooperative fusion, and channel attention mechanism. Finally, the fused features were fed into a bidirectional gated recurrent unit (BiGRU) network to heart sound segmentation results. Results The proposed method achieved precision, recall and F1 score of 96.70%, 96.99%, and 96.84% respectively. Conclusion The multi-feature fusion network proposed in this study has better heart sound segmentation performance, which can provide high-accuracy heart sound segmentation technology support for the design of automatic analysis of heart diseases based on heart sounds.
8.Mechanism of Ginkgo flavone aglycone in alleviating doxorubicin-induced cardiotoxicity based on transcriptomics and proteomics
Yujie TU ; Ying CAI ; Xueyi CHENG ; Jia SUN ; Jie PAN ; Chunhua LIU ; Yongjun LI ; Yong HUANG ; Lin ZHENG ; Yuan LU
China Pharmacy 2024;35(21):2596-2602
OBJECTIVE To investigate the mechanism by which Ginkgo flavone aglycone (GA) reduces the cardiotoxicity of doxorubicin (DOX) based on transcriptomics and proteomics. METHODS Thirty-six mice were randomly assigned to control group (CON group, tail vein injection of equal volume of physiological saline every other day+daily intragastric administration of an equal volume of physiological saline), DOX group (tail vein injection of 3 mg/kg DOX every other day), and GDOX group (daily intragastric administration of 100 mg/kg GA+tail vein injection of 3 mg/kg DOX every other day), with 12 mice in each group. The administration of drugs/physiological saline was continued for 15 days. Mouse heart tissues were collected for RNA-Seq transcriptomic sequencing and 4D-Label-free quantitative proteomic analysis to screen differentially expressed genes and proteins, which were then subjected to Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis. The expression levels of Apelin peptide (Apelin), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) mRNA and protein in mouse heart tissues, as well as the phosphorylation levels of PI3K and Akt proteins, were verified. H9c2 cardiomyocytes were divided into control group (CON group), DOX group (2 μmol/L), and GDOX group (2 μg/mL GA+2 μmol/L DOX) to determine cell viability and the levels of key glycolytic substances in the cells. RESULTS Six common pathways were identified from transcriptomics and proteomics, including the Apelin signaling pathway, the PI3K-Akt signaling pathway, and insulin resistance. Among them, the Apelin and PI3K-Akt signaling pathways were the most enriched in terms of gene numbers. Target validation experiments showed that compared to the CON group, the relative expression of Apelin, PI3K and Akt mRNA and protein levels, as well as the phosphorylation levels of PI3K and Akt proteins, were significantly decreased in the DOX group (P<0.05 or P<0.01). The relative expression of Apelin, PI3K and Akt mRNA and the phosphorylation levels of PI3K and Akt proteins were significantly increased in the GDOX group as compared with the DOX group (P<0.05 or P<0.01). Cellular experiments indicated that compared to the CON group, cell viability in the DOX group was significantly decreased (P<0.05), the relative uptake of glucose and the relative production of pyruvate and lactate were significantly increased (P<0.05), and the relative production of ATP was significantly reduced (P<0.05). Compared to the DOX group, cell viability in the GDOX group was significantly increased (P< 0.05), and the relative production of pyruvate and lactate was significantly reduced (P<0.05). CONCLUSIONS GA may alleviate DOX-induced cardiotoxicity by upregulating the mRNA and protein expression of Apelin, PI3K, and Akt in heart tissues, and regulating glycolytic processes.
9.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
10.Sodium tanshinone ⅡA sulfonate alleviated pyroptosis of human umbilical vein endothelial cells induced by H 2O 2
Xiaoyun PAN ; Xianyao TAO ; Jingyi MI ; Dong MAO ; Kai WANG ; Yongjun RUI
Chinese Journal of Plastic Surgery 2024;40(3):307-317
Objective:To investigate the effect of sodium tanshinone ⅡA sulfonate (STS) on pyroptosis of human umbilical vein endothelial cells (HUVECs) induced by H 2O 2 and its possible mechanism. Methods:From November 2021 to September 2022, HUVECs were used as the research subjects at Wuxi Ninth People’s Hospital. The experiment was divided into four groups: the blank control group (normal condition), blank + STS group, H 2O 2 group and H 2O 2 + STS group. When the cells reached 80% fusion, 500.00 μmol/L of H 2O 2 was added to H 2O 2 group and H 2O 2 + STS group for 3 hours, and then the medium containing 500.00 μmol/L H 2O 2 was removed. After that, the blank+ STS group and the H 2O 2+ STS group were each supplemented with 5.00 μg/ml of STS and co-cultured with HUVECs for 24 hours. CCK-8 was used to assess the impact of STS at various concentrations (0.00, 0.05, 0.50, 5.00, 50.00, 500.00 μg/ml) on the proliferation of HUVECs. DNA damage-positive cells were detected with TUNEL staining. The expression of NOD-like receptor protein 3 (NLRP3) was detected using real-time PCR (RT-PCR) to investigate the optimal concentration of pyroptosis induced by H 2O 2. A detection kit was used to measure the expression of reactive oxygen species (ROS) induced by H 2O 2. The effect of STS on the migration and tube formation of HUVECs during pyroptosis was examined using a cell scratch test and a matrix gel tube formation test. The expressions of NLRP3, caspase-1, interleukin-18, and interleukin-1β were detected using RT-PCR and Western blotting. Repeated measures ANOVA was used to compare the concentrations at different time points, t-tests were used to compare data between two groups, and one-way ANOVA was used to compare data between multiple groups. P<0.05 was considered statistically significant. Results:STS below 50.00 μg/ml had no effect on the proliferation of HUVECs, while 500.00 μmol/L H 2O 2 had the most significant effect on inducing pyroptosis in HUVECs. TUNEL staining showed that compared with the control group, the number of TUNEL-positive cells in H 2O 2 group was significantly increased, and the difference was statistically significant ( P<0.01). However, there was no significant difference in the number of TUNEL-positive cells in the H 2O 2+ STS group ( P>0.05). The results of ROS detection showed that compared with the H 2O 2 group, intracellular ROS levels in the H 2O 2+ STS group was significantly decreased, and the difference was statistically significant ( P<0.01). Cell scratch and tube formation in vitro experiments showed that compared with the control group, cell mobility and tube formation ability were significantly decreased in the H 2O 2 group (all P<0.01), and there was no statistical significance in the H 2O 2+ STS group (all P>0.05). RT-PCR and Western blotting results showed that, compared with the H 2O 2 group, the expression of pyroptosis-related factors in the H 2O 2+ STS group was significantly decreased (all P<0.05). Conclusion:STS can inhibit the excessive production of ROS, promote the cell migration and tubular formation of HUVECs after pyroptosis induction, and alleviate H 2O 2-induced pyroptosis of HUVECs, thereby promoting angiogenesis.

Result Analysis
Print
Save
E-mail