1.Identification of chemical components and determination of vitexin in the raw powder of Tongluo Shenggu capsule
Gelin WU ; Ruixin FAN ; Chuling LIANG ; Leng XING ; Yongjian XIE ; Ping GONG ; Peng ZHOU ; BO LI
Journal of China Pharmaceutical University 2025;56(2):166-175
The present study employed UPLC-MS/MS to analyze and identify compounds in the raw powder of Tongluo Shenggu capsules. An HPLC method for the determination of vitexin content was established. The analysis of this drug was performed on a 30 ℃ thermostatic Acquity UPLC® BEH C18 (2.1 mm×100 mm,1.7 μm) column, with the mobile phase comprising 0.2% formic acid-methanol flowing at 0.3 mL /min in a gradient elution manner. Mass spectrometry was detected by ESI sources in both positive and negative ion modes for qualitative identification of chemical constituents. 12 flavonoid and 3 stilbenes compounds in the raw powder of Tongluo Shenggu capsules were successfully identified. Additionally, an HPLC method for the determination of vitexin content was established using a XBridge C18 column (4.6 mm × 250 mm, 5 µm) with a mobile phase of 0.05% glacial acetic acid in methanol for gradient elution, at a column temperature of 30 °C, a flow rate of 1.0 mL/min, and an injection volume of 20 μL. The method demonstrated good linearity in the concentration range of 10 µg/mL to 40 µg/mL (R=1.000) with an average recovery rate of 96.7%. The establishment of these methods provides a scientific basis for the quality control and development of the raw powder of Tongluo Shenggu capsules.
2.2024 annual report of interventional treatment for congenital heart disease
Changdong ZHANG ; Yucheng ZHONG ; Geng LI ; Jun TIAN ; Gejun ZHANG ; Nianguo DONG ; Yuan FENG ; Daxin ZHOU ; Yongjian WU ; Lianglong CHEN ; Xiaoke SHANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(07):909-918
In recent years, with the continuous development and increasing maturity of interventional techniques, interventional treatment for congenital heart disease (CHD) has been progressively disseminated to county- and city-level hospitals in China. Concurrently, the standardized management of adult CHD (particularly patent foramen ovale) and the lifelong management of complex CHD are gaining increasing clinical attention, while the emergence of new techniques and products continuously advances the discipline. This article aims to review the new progress made in the field of interventional treatment for congenital heart disease in China during 2024. It specifically reviews and analyzes the following key aspects: (1) annual statistics on interventional closure procedures for CHD; (2) recent insights into patent foramen ovale closure; (3) advances in transcatheter pulmonary valve replacement; (4) interventional treatment and lifelong management strategies for complex CHD; (5) new interventional techniques for acquired heart disease; and (6) the application of artificial intelligence in CHD management. Through the synthesis and discussion of these topics, this article seeks to provide a detailed analysis of the current landscape of interventional treatment for CHD in China and project its future development trends.
3.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
4.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
5.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
6.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
7.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
8.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
9.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
10.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.

Result Analysis
Print
Save
E-mail