1.Study on accumulation of polysaccharide and steroid components in Polyporus umbellatus  infected by Armillaria  spp.
		                			
		                			Ming-shu YANG ; Yi-fei YIN ; Juan CHEN ; Bing LI ; Meng-yan HOU ; Chun-yan LENG ; Yong-mei XING ; Shun-xing GUO
Acta Pharmaceutica Sinica 2025;60(1):232-238
		                        		
		                        			
		                        			 In view of the few studies on the influence of 
		                        		
		                        	
2.Analysis of Mechanism of Xingpi Capsules in Treatment of Functional Dyspepsia Based on Transcriptomics
Rongxin ZHU ; Mingyue HUANG ; Keyan WANG ; Xiangning LIU ; Yinglan LYU ; Gang WANG ; Fangfang RUI ; Qiong DENG ; Jianteng DONG ; Yong WANG ; Chun LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):164-172
		                        		
		                        			
		                        			ObjectiveTo investigate the ameliorative effect of Xingpi capsules on functional dyspepsia(FD) and the potential mechanism. MethodsSixty SPF-grade male SD neonatal rats(7 days old) were randomly divided into the normal group(n=12) and the modeling group(n=48), and the FD model was prepared by iodoacetamide gavage in the modeling group. After the model was successfully prepared, the rats in the modeling group were randomly divided into the model group, the low-dose and high-dose groups of Xingpi capsules(0.135, 0.54 g·kg-1) and the domperidone group(3 mg·kg-1), with 12 rats in each group. Rats in the normal and model groups were gavaged with distilled water, and rats in the rest of the groups were gavaged with the corresponding medicinal solution, once a day for 7 d. The general survival condition of the rats was observed, and the water intake and food intake of the rats were measured, the gastric emptying rate and the small intestinal propulsion rate were measured at the end of the treatment, the pathological damage of the rat duodenum was examined by hematoxylin-eosin(HE) staining, and the expressions of colonic tight junction protein(Occludin) and zonula occludens protein-1(ZO-1) were detected by immunofluorescence. The differentially expressed genes in the duodenal tissues of the model group and the normal group, and the high-dose group of Xingpi capsules and the model group were detected by transcriptome sequencing after the final administration, and Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out. The transcriptomic results were validated by Western blot, immunofluorescence, and real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the active ingredients of Xingpi capsules were screened for molecular docking with the key targets. ResultsCompared with the normal group, the general survival condition of rats in the model group was poorer, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly reduced(P<0.05), inflammatory infiltration was seen in duodenal pathology, and the fluorescence intensities of Occludin and ZO-1 in the colon were significantly reduced(P<0.01). Compared with the model group, the general survival condition of rats in the high-dose group of Xingpi capsules improved significantly, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly increased(P<0.05), the duodenal pathology showed a decrease in inflammatory infiltration, and the fluorescence intensities of colonic Occludin and ZO-1 were significantly increased(P<0.01). Transcriptomic results showed that Xingpi capsules might exert therapeutic effects by regulating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) through the key genes such as Slc5a1, Abhd6. The validation results showed that compared with the normal group, the phosphorylation levels of PI3K and Akt proteins, the protein expression level of interleukin(IL)-1β, and the fluorescence intensities of IL-6 and IL-1β were significantly increased in the model group(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3, Slc5a9 and other key genes were significantly increased(P<0.01). Compared with the model group, the phosphorylation levels of PI3K and Akt, the protein expression level of IL-1β and the fluorescence intensities of IL-6 and IL-1β in the high-dose group of Xingpi capsules were significantly reduced(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3 and Slc5a9 were significantly reduced(P<0.05). Weighted gene co-expression network analysis and molecular docking results showed that E-nerolidol and Z-nerolidol in Xingpi capsules were well bound to ABDH6 protein, and linarionoside A, valerosidatum and senkirkine were well bound to Slc5a1 protein. ConclusionXingpi capsules can effectively improve the general survival and gastrointestinal motility of FD rats, its specific mechanism may be related to the inhibition of PI3K/Akt signaling pathway to alleviate the low-grade inflammation of duodenum, and E-nerolidol, Z-nerolidol, linarionoside A, valerosidatum and senkirkine may be its key active ingredients. 
		                        		
		                        		
		                        		
		                        	
3.Analysis of Mechanism of Xingpi Capsules in Treatment of Functional Dyspepsia Based on Transcriptomics
Rongxin ZHU ; Mingyue HUANG ; Keyan WANG ; Xiangning LIU ; Yinglan LYU ; Gang WANG ; Fangfang RUI ; Qiong DENG ; Jianteng DONG ; Yong WANG ; Chun LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):164-172
		                        		
		                        			
		                        			ObjectiveTo investigate the ameliorative effect of Xingpi capsules on functional dyspepsia(FD) and the potential mechanism. MethodsSixty SPF-grade male SD neonatal rats(7 days old) were randomly divided into the normal group(n=12) and the modeling group(n=48), and the FD model was prepared by iodoacetamide gavage in the modeling group. After the model was successfully prepared, the rats in the modeling group were randomly divided into the model group, the low-dose and high-dose groups of Xingpi capsules(0.135, 0.54 g·kg-1) and the domperidone group(3 mg·kg-1), with 12 rats in each group. Rats in the normal and model groups were gavaged with distilled water, and rats in the rest of the groups were gavaged with the corresponding medicinal solution, once a day for 7 d. The general survival condition of the rats was observed, and the water intake and food intake of the rats were measured, the gastric emptying rate and the small intestinal propulsion rate were measured at the end of the treatment, the pathological damage of the rat duodenum was examined by hematoxylin-eosin(HE) staining, and the expressions of colonic tight junction protein(Occludin) and zonula occludens protein-1(ZO-1) were detected by immunofluorescence. The differentially expressed genes in the duodenal tissues of the model group and the normal group, and the high-dose group of Xingpi capsules and the model group were detected by transcriptome sequencing after the final administration, and Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out. The transcriptomic results were validated by Western blot, immunofluorescence, and real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the active ingredients of Xingpi capsules were screened for molecular docking with the key targets. ResultsCompared with the normal group, the general survival condition of rats in the model group was poorer, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly reduced(P<0.05), inflammatory infiltration was seen in duodenal pathology, and the fluorescence intensities of Occludin and ZO-1 in the colon were significantly reduced(P<0.01). Compared with the model group, the general survival condition of rats in the high-dose group of Xingpi capsules improved significantly, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly increased(P<0.05), the duodenal pathology showed a decrease in inflammatory infiltration, and the fluorescence intensities of colonic Occludin and ZO-1 were significantly increased(P<0.01). Transcriptomic results showed that Xingpi capsules might exert therapeutic effects by regulating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) through the key genes such as Slc5a1, Abhd6. The validation results showed that compared with the normal group, the phosphorylation levels of PI3K and Akt proteins, the protein expression level of interleukin(IL)-1β, and the fluorescence intensities of IL-6 and IL-1β were significantly increased in the model group(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3, Slc5a9 and other key genes were significantly increased(P<0.01). Compared with the model group, the phosphorylation levels of PI3K and Akt, the protein expression level of IL-1β and the fluorescence intensities of IL-6 and IL-1β in the high-dose group of Xingpi capsules were significantly reduced(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3 and Slc5a9 were significantly reduced(P<0.05). Weighted gene co-expression network analysis and molecular docking results showed that E-nerolidol and Z-nerolidol in Xingpi capsules were well bound to ABDH6 protein, and linarionoside A, valerosidatum and senkirkine were well bound to Slc5a1 protein. ConclusionXingpi capsules can effectively improve the general survival and gastrointestinal motility of FD rats, its specific mechanism may be related to the inhibition of PI3K/Akt signaling pathway to alleviate the low-grade inflammation of duodenum, and E-nerolidol, Z-nerolidol, linarionoside A, valerosidatum and senkirkine may be its key active ingredients. 
		                        		
		                        		
		                        		
		                        	
4.Shexiang Tongxin Dropping Pills Ameliorate Dysfunction of Cardiac Microvascular Endothelial Cells in Rat Model of Heart Failure
Junkai YAO ; Shujuan GUO ; Mingyue HUANG ; Chun LI ; Yong WANG ; Wei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):87-95
		                        		
		                        			
		                        			ObjectiveTo study the mechanism by which Shexiang Tongxin dropping pills (STDP) ameliorate the dysfunction of coronary microvascular endothelial cells in the rat model of heart failure. MethodsThe heart failure model was established by ligation of the left anterior descending coronary artery in rats, which were then allocated into sham, model, STDP, and telmisartan (TLM) groups and treated for 21 days. The heart function was detected by echocardiography, and the levels of myocardial injury markers, nitric oxide (NO), endothelin-1 (ET1), and angiotensinⅡ (AngⅡ) were determined by enzyme-linked immunosorbent assay (ELISA). The protein levels of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) were determined by Western blot. The model of cardiac microvascular endothelial cell injury was established by AngⅡ induction and then treated with the STDP-containing serum (5%, 10%, and 20%) for 24 h. The levels of NO and ET1 were measured by ELISA. Western blot was employed to determine the protein levels of eNOS, iNOS, angiotensin-converting enzyme 2 (ACE2), and angiotensinⅡ receptor 2 (AT2). MLN-4760, an ACE2 inhibitor, was used to explore the mechanism underpinning the regulatory effect of STDP on the ACE2-AT2/MAS pathway. ResultsCompared with the sham group, the model group showed decreases in left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) (P<0.05), a decline in serum NO level, elevations in serum AngⅡ and ET1 levels, a reduction in p-eNOS/eNOS ratio, and up-regulation in iNOS expression (P<0.05). Compared with the model group, STDP increased LVEF, LVFS, and cardiac output (P<0.05), raised the level of NO and lowered the levels of AngⅡ and ET1 in the serum (P<0.05), increased the p-eNOS/eNOS value, and inhibited iNOS expression (P<0.05). Compared with the AngⅡ group, STDP increased the NO content and decreased the ET1 content in endothelial cells (P<0.05), increased the p-eNOS/eNOS ratio, and inhibited the iNOS expression (P<0.05). The ACE2 inhibitor MLN-4760 reversed the regulatory effects of STDP on p-eNOS, eNOS, and iNOS. ConclusionSTDP improves the cardiac function in the rat model of heart failure, enhances the synthesis and release of NO in cardiac microvascular endothelial cells, reduces AngⅡ and ET1 levels, and regulates the expression of p-eNOS and eNOS, thereby ameliorating the dysfunction of microvascular endothelial cells in heart failure. This mechanism is related to the upregulation of the expression of proteins in the ACE2-AT2/MAS pathway. 
		                        		
		                        		
		                        		
		                        	
5.Effect of ANAs on hormone response in patients with AIH-PBC overlap syndrome and AIH-only
Qiong LI ; Ai-Ping TIAN ; Yong-Wu MAO ; Fu-Chun WANG ; Xiao-Rong MAO
Medical Journal of Chinese People's Liberation Army 2024;49(1):64-69
		                        		
		                        			
		                        			Objective To investigate the effect of antinuclear antibodies(ANAs)on hormone response in patients with autoimmune hepatitis(AIH)-primary biliary cholangitis(PBC)overlap syndrome(AIH-PBC OS)and AIH-only within half a year.Methods A retrospective analysis of 77 patients with autoimmune liver disease(AILD)admitted to First Clinical Medical College of Lanzhou University from January 2018 to December 2021,all of whom were confirmed by liver biopsy and receiving glucocorticoid treatment.Among them,46 patients were in AIH-PBC OS group and 31 were in AIH-only group.The general clinical characteristics,liver puncture-related indexes,autoantibodies and immunoglobulin indexes of patients in each group at the time of diagnosis were collected and compared,and the biochemical and immunoglobulin indexes of patients at the time of hormone use and at the time of review within 6 months were also collected,and the hormone response within 6 months was evaluated according to the levels of glutamic transaminase(AST),glutamic alanine transaminase(ALT)and immunoglobulin G(IgG),and the effect of ANAs on hormone response outcomes in both groups over a six-month period was analyzed.Multifactorial ordered logistic analysis was performed to evaluate the effect of ANAs on hormone response between two groups.Results There was no statistically significant difference in the percentage of AIH-PBC OS and AIH-only patients among both ANAs-positive and-negative AILD patients(55.6%vs.44.4%and 65.6%vs.34.4%,P>0.05).Among 46 patients with AIH-PBC OS,there were 25 in ANAs-positive group and 21 in ANAs-negative group.The rate of complete hormone response within 6 months was lower than that of ANAs-negative group(44.0%vs.76.2%),while the rate of hormone non-response was higher than that of ANAs-negative group(20.0%vs.0),and the difference was statistically significant(P<0.05).There were 20 cases of ANAs-positive and 11 cases of ANAs-negative in the 31 AIH-only patients.There was no statistically significant difference in the results of hormone response within 6 months between the two groups(P>0.05).Multifactorial ordered logistic analysis showed that AIH-PBC OS patients were more likely to have a higher likelihood of 6-month hormone non-response rate in ANAs-positive patients,and the difference was statistically different(P<0.05).And there was no significant effect of ANAs type on hormone response outcome in AIH-only patients(P>0.05).Conclusion AIH-PBC OS ANAs-positive patients have a poor hormone response within half a year.In AIH-only patients,ANAs have no significant effect on hormone response results.
		                        		
		                        		
		                        		
		                        	
6.Effects of berbamine and berberine on the apoptosis and activity of eosinophils in vitro
Xu CHENG ; Chun GU ; Cheng AN ; Xuejun HOU ; Jiaxin FEI ; Guijian LIU ; Yong LI ; Bo PANG
Immunological Journal 2024;40(5):411-417,424
		                        		
		                        			
		                        			This study was performed to explore the effects of berberine(BBR)and berbamine(BA)on the apoptosis and activity of eosinophils,and to provide new ideas for the treatment of eosinophil-related diseases.Anticoagulated whole blood was taken from hospitalized patients,and eosinophils were purified by magnetic bead sorting technology,and the cell purification rate was compared by using flow cytometry.The purified eosinophils were cultured and stimulated with different concentrations of BBR and BA,and the apoptosis of eosinophils was observed using immunofluorescence microscopy.Flow cytometry was used to detect the apoptosis rate,reactive oxygen species(ROS)release,mitochondrial membrane potential,and CD11b,CD62L and CD63 molecular expression of eosinophils.Data showed that 10 μmol/L BBR displayed significant anti-apoptosis effect on eosinophils at 18 h,24 h,48 h,however,100 μmol/L and 150 μmol/L BBR displayed significant apoptosis-promoting effects on eosinophils at 24 h,48 h,especially in the early stage.BA at 5 μmol/L,15 μmol/L and 25 μmol/L showed significant apoptosis-promoting effects on eosinophils at 24 h,48 h,especially in the late stage.In eosinophils,BA stimulated the production of ROS and the decrease of mitochondrial membrane potential in a concentration-dependent manner,reaching the maximum effect at 25 μmol/L,while BBR stimulation did not change mitochondria and ROS.Pretreatment with 25 μmol/L BA significantly inhibited the increase of CD11b expression and the decrease of CD62L expression in eosinophils after eotaxin-2 stimulation.In conclusion,berberine has a bidirectional regulatory effect on the quantity of eosinophils,while berbamine promotes eosinophil apoptosis and inhibits eosinophil activation.Both compounds hold significant potential for regulating the progression of eosinophil-associated diseases,and their regulatory mechanisms need further investigation.
		                        		
		                        		
		                        		
		                        	
7.Analysis of the whole genome characteristics of influenza A (H3N2) virus in Wuxi city from 2022 to 2023
Yong XU ; Rui WANG ; Chun′an YU ; Jing BAO ; Qi ZHOU ; Yong XIAO ; Hong LI ; Xiaoluan SHI ; Guangyuan MA
Chinese Journal of Experimental and Clinical Virology 2024;38(4):454-463
		                        		
		                        			
		                        			Objective:To understand the whole genome and genetic evolution characteristics of the first epidemic influenza A (H3N2) viruses in Wuxi from 2022-2023.Methods:Real time fluorescence quantitative RT-PCR method was used to perform typing on respiratory samples of influenza cases. Virus isolation was performed on samples with positive nucleic acid of subtype A H3N2 influenza virus detected. After cell culture, nucleic acid was extracted from strains with red blood cell agglutination test (HA) ≥ 1∶8, whole genome sequence was amplified, library was constructed, and computer sequencing was performed using MiSeq sequencer. Using NC_007366.1 as reference strain, the data were analyzed using CLC Genomics Workbench (Version 23) software. The phylogenetic tree was constructed using MEGA 7.0 software, and the N-glycosylation sites were predicted by NetNGlyc 1.0 Server software.Results:The nucleotide homology and amino acid homology among 35 strains of influenza A H3N2 virus from 2022 to 2023 were 96.4%-100% and 95.2%-100%, respectively. The 16 epidemic strains in 2022 belong to the 3C.2a1b.2a.1a evolutionary branch, while the 19 epidemic strains in 2023 belong to the 3C.2a1b.2a.2a.3a.1 evolutionary branch. There are 7 differences in the nucleotide sequence of the HA gene between the 2022 epidemic strain and the corresponding vaccine strain, sharing 15 mutation sites; There are 28 differences in the nucleotide sequence of the HA gene between the 2023 epidemic strain and the corresponding vaccine strain, sharing 17 mutation sites. The HA genes of 35 epidemic strains all lack N-glycosylation site 61: NSS, while in 2023, the HA genes of 19 epidemic strains added N-glycosylation site 110: NSS.Conclusions:The HA and NA genes of influenza A H3N2 virus in 2022 and 2023 belong to two evolutionary branches, respectively, and both show specific amino acid site changes compared to the corresponding vaccine strains. The antigen matching between the 2022 epidemic strain and the vaccine strain is relatively good, while there is a risk of low antigen matching between the 2023 epidemic strain and the vaccine strain.
		                        		
		                        		
		                        		
		                        	
8.Regulation of Zygotic Genome Activation in Early Embryonic Development
Ji-Xiang XING ; Han-Shuang LI ; Hai-Cheng LI ; Yong-Chun ZUO
Progress in Biochemistry and Biophysics 2024;51(3):525-543
		                        		
		                        			
		                        			The development of animal early embryos commences with the reprogramming of terminally differentiated gametes into totipotent zygotes following fertilization. During the initial stages of embryonic development, the transcriptional levels of zygotic genome remain silent and maternal gene products dominate the regulation of development. As embryonic development progresses, the maternal gene products undergo phased degradation while the zygotic genome gradually activates transcription, marking the transition from the maternal regulation to the zygotic genome regulation in early embryonic development, which is also referred to as the maternal-zygotic transition (MZT). Zygotic genome activation (ZGA) is a critical turning process in this transition, and its accurate occurrence is crucial for early embryonic development and cell fate decisions. However, the regulatory factors and molecular mechanisms of ZGA remain poorly understood. Studies have shown that ZGA varies greatly among different species and may be affected by a variety of regulatory factors such as DNA methylation, histone modification, non-coding RNA, chromatin remodeling and ZGA related factors. Here, we review the research progress of the above regulatory factors affecting ZGA, which can provide valuable insights for further investigations into the ZGA related mechanisms of early embryos. 
		                        		
		                        		
		                        		
		                        	
9.Effect of different blood pressure stratification on renal function in diabetic population
Yong-Gang CHEN ; Shou-Ling WU ; Jin-Feng ZHANG ; Shuo-Hua CHEN ; Li-Wen WANG ; Kai YANG ; Hai-Liang XIONG ; Ming GAO ; Chun-Yu JIANG ; Ye-Qiang LIU ; Yan-Min ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(6):663-669
		                        		
		                        			
		                        			Objective To investigate the effect of varying blood pressure stratification on renal function in the diabetic population.Methods A prospective cohort study was conducted,enrolling 9 489 diabetic patients from a total of 101 510 Kailuan Group employees who underwent health examinations between July 2006 and October 2007.The follow-up period was(8.6±4.0)years.Participants were categorized into four groups based on their baseline blood pressure levels:normal blood pressure(systolic blood pressure<120 mmHg and diastolic blood pressure<80 mmHg),elevated blood pressure(systolic blood pressure 120-130 mmHg and diastolic blood pressure<80 mmHg),stage 1 hypertension(systolic blood pressure 130-140 mmHg and/or diastolic blood pressure 80-90 mmHg),and stage 2 hypertension(systolic blood pressure≥140 mmHg and/or diastolic blood pressure≥90 mmHg).The incidence density of chronic kidney disease(CKD)was compared among these groups.A multivariate Cox proportional hazards regression model was employed to assess the effects of different blood pressure levels on renal function in diabetic patients,with the stability of the results confirmed using a multivariate time-dependent Cox proportional hazards model.Sensitivity analysis was conducted after excluding cases of cardiovascular disease(CVD)during follow-up,and cases using antihypertensive and antidiabetic medications at baseline.Results(1)At baseline,stage 1 hypertension patients demonstrated statistically significant higher differences with age and body mass index(BMI)compared to normal blood pressure group(P<0.05).(2)By the end of the follow-up,2 294 cases of CKD were identified,including 1 117 cases of estimated glomerular filtration rate(eGFR)decline and 1 575 cases of urinary protein.The incidences density of CKD,eGFR decline and urinary protein for stage 1 hypertension group were 39.4,16.3 and 25.5 per thousand person-years,respectively,all of which were statistically significant different from normal blood pressure group(log-rank test,P<0.01).(3)Multivariate Cox regression analysis revealed that,compared to the normal blood pressure group,stage 1 hypertension was associated with a 29%increased risk of CKD(HR=1.29,95%CI 1.09-1.52)and a 40%increased risk of eGFR decline(HR=1.40,95%CI 1.08-1.80)in diabetic individuals.Conclusion Stage 1 hypertension significantly increases the risk of CKD and eGFR decline in diabetic individuals,with a particularly notable effect on the risk of eGFR decline.
		                        		
		                        		
		                        		
		                        	
10.Effect of total flavonoids of Dracocephalum moldavica on TMAO-mediated JAK/STAT axis against atherosclerosis in rats and inflammation in RAW264.7 cells
Wen-Jiang CAO ; Chun-Yan DU ; Chuan-Sheng HUANG ; Yun-Li ZHAO ; Xiao-Li MA ; Yong YUAN ; Xin-Chun WANG
Chinese Pharmacological Bulletin 2024;40(9):1766-1772
		                        		
		                        			
		                        			Aim To investigate the protective effect of total flavonoids of Dracocephalum moldavica(TFDM)on atherosclerosis in rats and the inflammation of mouse macrophage RAW264.7 aggravated by trimeth-ylamine N-oxide(TMAO)and its possible mecha-nism.Methods The AS model of SD rats was estab-lished by high-fat diet feeding combined with intraper-itoneal injection of vitamin D3.The rats were divided into control group,model group,simvastatin group(15 mg·kg-1)and TFDM group(60,30,15 mg·kg-1).Biochemical method was used to detect the levels of se-rum total cholesterol(TC),triglyceride(TG)and low density lipoprotein cholesterol(LDL-C).HE staining was used to detect the pathological changes of aortic tissue.ELISA kit was used to detect the expression of TMAO,IL-1β,IL-6 in serum and TNF-α in liver tis-sue.Western blot was used to detect the expression of JAK,STAT and TNF-α protein in aorta.In addition,RAW264.7 macrophages were cultured in vitro,and LPS+TMAO was used to establish a macrophage in-flammation model,which was intervened by TFDM(100,50,25 mg·L-1).CCK-8 was used to determine cell viability and proliferation,and RT-qPCR was used to detect the expression of TNF-α,IL-6,JAK and STAT mRNA in cells.Results TFDM could significantly down-regulate the levels of serum TC,TG,LDL-C,ser-um TMAO,IL-1β,IL-6 and liver TNF-α,reduce aortic plaque deposition,and down-regulate the protein ex-pression of TNF-α,JAK and STAT in aorta.In addi-tion,TFDM intervention can significantly down-regulate the expression of TNF-α,IL-6,JAK,STAT mRNA and the expression of JAK,STAT protein.Conclusion TFDM can reduce the content of TMAO in serum,in-hibit JAK/STAT inflammatory signaling pathway and slow down the occurrence of inflammation,playing an anti-AS role.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail