1.Nucleic Acid-driven Protein Degradation: Frontiers of Lysosomal Targeted Degradation Technology
Han YIN ; Yu LI ; Yu-Chuan FAN ; Shuai GUO ; Yuan-Yu HUANG ; Yong LI ; Yu-Hua WENG
Progress in Biochemistry and Biophysics 2025;52(1):5-19
Distinct from the complementary inhibition mechanism through binding to the target with three-dimensional conformation of small molecule inhibitors, targeted protein degradation technology takes tremendous advantage of endogenous protein degradation pathway inside cells to degrade plenty of “undruggable” target proteins, which provides a novel route for the treatment of many serious diseases, mainly including proteolysis-targeting chimeras, lysosome-targeting chimeras, autophagy-targeting chimeras, antibody-based proteolysis-targeting chimeras, etc. Unlike proteolysis-targeting chimeras first found in 2001, which rely on ubiquitin-proteasome system to mainly degrade intracellular proteins of interest, lysosome-targeting chimeras identified in 2020, which was act as the fastly developing technology, utilize cellular lysosomal pathway through endocytosis mediated by lysosome-targeting receptor to degrade both extracellular and membrane proteins. As an emerging biomedical technology, nucleic acid-driven lysosome-targeting chimeras utilize nucleic acids as certain components of chimera molecule to replace with ligand to lysosome-targeting receptor or protein of interest, exhibiting broad application prospects and potential clinical value in disease treatment and drug development. This review mainly introduced present progress of nucleic acid-driven lysosome-targeting chimeras technology, including its basic composition, its advantages compared with antibody or glycopeptide-based lysosome-targeting chimeras, and focused on its chief application, in terms of the type of lysosome-targeting receptors. Most research about the development of nucleic acid-driven lysosome-targeting chimeras focused on those which utilized cation-independent mannose-6-phosphonate receptor as the lysosome-targeting receptor. Both mannose-6-phosphonate-modified glycopeptide and nucleic aptamer targeting cation-independent mannose-6-phosphonate receptor, even double-stranded DNA molecule moiety can be taken advantage as the ligand to lysosome-targeting receptor. The same as classical lysosome-targeting chimeras, asialoglycoprotein receptor can also be used for advance of nucleic acid-driven lysosome-targeting chimeras. Another new-found lysosome-targeting receptor, scavenger receptor, can bind dendritic DNA molecules to mediate cellular internalization of complex and lysosomal degradation of target protein, suggesting the successful application of scavenger receptor-mediated nucleic acid-driven lysosome-targeting chimeras. In addition, this review briefly overviewed the history of lysosome-targeting chimeras, including first-generation and second-generation lysosome-targeting chimeras through cation-independent mannose-6-phosphonate receptor-mediated and asialoglycoprotein receptor-mediated endocytosis respectively, so that a clear timeline can be presented for the advance of chimera technique. Meantime, current deficiency and challenge of lysosome-targeting chimeras was also mentioned to give some direction for deep progress of lysosome-targeting chimeras. Finally, according to faulty lysosomal degradation efficiency, more cellular mechanism where lysosome-targeting chimeras perform degradation of protein of interest need to be deeply explored. In view of current progress and direction of nucleic acid-driven lysosome-targeting chimeras, we discussed its current challenges and development direction in the future. Stability of natural nucleic acid molecule and optimized chimera construction have a great influence on the biological function of lysosome-targeting chimeras. Discovery of novel lysosome-targeting receptors and nucleic aptamer with higher affinity to the target will greatly facilitate profound advance of chimera technique. In summary, nucleic acid-driven lysosome-targeting chimeras have many superiorities, such as lower immunogenicity, expedient synthesis of chimera molecules and so on, in contrast to classical lysosome-targeting chimeras, making it more valuable. Also, the chimera technology provides new ideas and methods for biomedical research, drug development and clinical treatment, and can be used more widely through further research and optimization.
2.Construction of A Nomogram Prognostic Model Based on Pretreatment Inflammatory Indicator for Esophageal Squamous Cell Carcinoma Patients Treated with Radical Radiotherapy
Shenbo FU ; Long JIN ; Jing LIANG ; Junjun GUO ; Yu CHE ; Chenyang LI ; Yong CHEN
Cancer Research on Prevention and Treatment 2025;52(2):142-150
Objective To describe the significance of the pretreatment inflammatory indicators in predicting the prognosis of patients with esophageal squamous cell carcinoma (ESCC) after undergoing radical radiotherapy. Methods The data of 246 ESCC patients who underwent radical radiotherapy were retrospectively collected. Receiver operating characteristic (ROC) curves were drawn to determine the optimal cutoff values for platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), and systemic immune-inflammation index (SII). The Kaplan-Meier method was used for survival analysis. We conducted univariate and multivariate analyses by using the Cox proportional risk regression model. Software R (version 4.2.0) was used to create the nomogram of prognostic factors. Results The results of the ROC curve analysis showed that the optimal cutoff values of PLR, NLR, and SII were 146.06, 2.67, and 493.97, respectively. The overall response rates were 77.6% and 64.5% in the low and high NLR groups, respectively (P<0.05). The results of the Kaplan-Meier survival analysis revealed that the prognosis of patients in the low PLR, NLR, and SII group was better than that of patients in the high PLR, NLR, and SII group (all P<0.05). The results of the multivariate Cox regression analysis showed that gender, treatment modalities, T stage, and NLR were independent factors affecting the overall survival (OS). In addition, T stage and NLR were independent factors affecting the progression-free survival (PFS) (all P<0.05). The nomogram models of OS and PFS prediction were established based on multivariate analysis. The C-index values were 0.703 and 0.668. The calibration curves showed excellent consistency between the predicted and observed OS and PFS. Conclusion The pretreatment values of PLR, NLR, and SII are correlated with the prognosis of patients with ESCC who underwent radical radiotherapy. Moreover, NLR is an independent factor affecting the OS and PFS of ESCC patients. The NLR-based nomogram model has a good predictive ability.
3.Gushukang interferes with osteoclasts:activation of nuclear factor erythroid 2-related factor 2 regulates the c-Fos/NFATc1 pathway in the treatment of osteoporosis
Chengzhi HOU ; Jiatong HAN ; Guangcheng WEI ; Zechuan ZHUO ; Qiuyue LI ; Yong ZHAO ; Zhangjingze YU
Chinese Journal of Tissue Engineering Research 2025;29(2):279-285
BACKGROUND:It has been shown that Gushukang affects bone metabolism by regulating nucleotide and amino acid metabolism and immune mechanisms.Current research on the mechanism of Gushukang in the treatment of osteoporosis primarily focuses on osteoblast regulation and requires further improvement from the perspective of osteoclasts. OBJECTIVE:To investigate the mechanism by which Gushukang interferes with osteoclasts in the treatment of osteoporosis using RAW264.7 cells as the research model. METHODS:Twenty-four 8-week-old female Sprague-Dawley rats were randomly divided into four groups(n=6 per group):the three experimental groups were given 1,2 and 4 g/kg osteoporosis solution by gavage(2 times per day),and the control group was given an equal amount of distilled water by gavage(2 times per day).After 7 days of intragastric administration,aortic blood samples were extracted to collect serum samples using centrifugation,and serum samples from the same groups were combined to obtain the low-,medium-,and high-concentration Gushukang-containing and normal sera for the subsequent experiments.(1)RAW264.7 cells were cultured in six groups:normal serum was added to the control group;low,medium,and high concentration groups were added with low,medium,and high concentrations of Gushukang-containing serum,respectively;ML385,a nuclear factor erythroid 2-related factor 2(Nrf2)inhibitor was given in the Nrf2 inhibitor group;and t-BHQ,a Nrf2 activator,was added in the Nrf2 activator group.Cell viability was detected using the cell counting kit-8 assay.(2)The 3rd generation RAW 264.7 cells were cultured and divided into five groups:the blank control group was added with normal serum,the osteoclast group was added with receptor activator of nuclear factor κB ligand(RANKL),and the low-,medium-,and high-concentration groups were added with low-,medium-,and high-concentration Gushukang-containing serum based on the addition of RANKL.Tartrate-resistant acid phosphate staining was performed after 5 days of culture.(3)RAW264.7 cells were cultured and divided into five groups:blank control group was cultured with normal serum,osteoclast group cultured with normal serum and RANKL,high concentration+osteoclast group cultured with RANKL+high concentration Gushukang-containing serum,osteoclast+Nrf2 agonist group cultured with RANKL+t-BHQ,and high concentration+osteoclast+Nrf2 inhibitor group cultured with RANKL+high concentration Gushukang-containing serum+ML385.Western blot assay and determination of reactive oxygen content were performed after 5 days of culture. RESULTS AND CONCLUSION:The cell counting kit-8 results indicated that Gushukang-containing serum,NRF2 inhibitor or agonist had no significant effect on RAW264.7 cell viability.Tartrate-resistant acid phosphate staining results demonstrated that Gushukang-containing serum exhibited a concentration-dependent inhibitory effect on osteoclast differentiation.Western blot analysis and determination of reactive oxygen species revealed that compared with the blank control group,Nrf2 protein expression was decreased in the osteoclast group(P<0.05),while c-Fos and NFATc1 protein expression and reactive oxygen species content were elevated(P<0.05);compared with the osteoclast group,Nrf2 protein expression was elevated and reactive oxygen species content was decreased in the high-concentration+osteoclast group,osteoclast+Nrf2 agonist group,and high-concentration+osteoclast+Nrf2 inhibitor group(P<0.05),while c-Fos and NFATc1 protein expression was decreased in the high concentration+osteoclast group and osteoclast+Nrf2 agonist group(P<0.05);compared with the high concentration+osteoclast group,Nrf2 protein expression was decreased(P<0.05)and reactive oxygen species content was elevated(P<0.05)in the high concentration+osteoclast+Nrf2 inhibitor group.To conclude,Gushukang reduces reactive oxygen species production by activating Nrf2,thereby inhibiting downstream of the c-Fos/NFATc1 pathway and suppressing osteoclast differentiation.
4.Right ventricular-pulmonary artery connection for palliative treatment of pulmonary atresia with ventricular septal defect in children: A single-center retrospective study
Shuai ZHANG ; Jianrui MA ; Hailong QIU ; Xinjian YAN ; Wen XIE ; Qiushi REN ; Juemin YU ; Tianyu CHEN ; Yong ZHANG ; Xiaohua LI ; Furong LIU ; Shusheng WEN ; Jian ZHUANG ; Qiang GAO ; Jianzheng CEN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):366-371
Objective To compare the benefits and drawbacks of primary patch expansion versus pericardial tube right ventricular-pulmonary artery connection in patients diagnosed with pulmonary atresia with ventricular septal defect (PA/VSD). Methods A retrospective study was conducted on patients diagnosed with PA/VSD who underwent primary right ventricular-pulmonary artery connection surgery at our center between 2010 and 2020. Patients were categorized into two groups based on the type of right ventricular-pulmonary artery connection: a pericardial tube group and a patch expansion group. Clinical data and imaging findings were compared between the two groups. Results A total of 51 patients were included in the study, comprising 31 males and 20 females, with a median age of 12.57 (4.57, 49.67) months. The pericardial tube group included 19 patients with a median age of 17.17 (7.33, 49.67) months, while the patch expansion group consisted of 32 patients with a median age of 8.58 (3.57, 52.72) months. In both groups, the diameter of pulmonary artery, McGoon index, and Nakata index significantly increased after treatment (P<0.001). However, the pericardial tube group exhibited a longer extracorporeal circulation time (P<0.001). The reoperation rate was notably high, with 74.51% of patients requiring further surgical intervention, including 26 (81.25%) patients in the patch expansion group and 12 (63.16%) patients in the pericardial tube group. No statistical differences were observed in long-term cure rates or mortality between the two groups (P>0.005). Conclusion In patients with PA/VSD, both patch expansion and pericardial tube right ventricular-pulmonary artery connection serve as effective initial palliative treatment strategies that promote pulmonary vessel development and provide a favorable foundation for subsequent radical operations. However, compared to the pericardial tube approach, the patch expansion technique is simpler to perform and preserves some intrinsic potential for pulmonary artery development, making it the preferred procedure.
5.Exploring mechanism of Porana racemosa Roxb. in treating rheumatoid arthritis based on integration of network pharmacology and molecular docking combined with experimental validation
Chen-yu YE ; Ning LI ; Yin-zi CHEN ; Tong QU ; Jing HU ; Zhi-yong CHEN ; Hui REN
Acta Pharmaceutica Sinica 2025;60(1):117-129
Through network pharmacology and molecular docking technology, combined with
6.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
7.Predicting the surgical difficulty,complications and prognosis of kidney tumors based on anatomical features:advances in renal tumor scoring systems
Gen LI ; Yuhao YU ; Xuexing FAN ; Jincheng LI ; Jiasong LI ; Pugui LI ; Xiaopen CHEN ; He WANG ; Geng ZHANG ; Yong WANG
Journal of Modern Urology 2025;30(4):355-363
Renal tumor scoring systems can describe the anatomical characteristics of renal tumors. It is an important standard to evaluate the surgical complexity and to evaluate the surgical complexity and feasibility of partial nephrectomy. Scholars at home and abroad have established various scoring systems based on different anatomical parameters,such as R.E.N.A.L.,PADUA,C-Index,which are used to guide the clinical selection of surgical modalities,and predict perioperative complications and prognosis. In this paper,various scoring systems are grouped into three major categories according to their functions:prediction of surgical complexity,prediction of complications,and prediction of prognosis. The contents,characteristics and clinical application value of various renal tumor scoring systems are introduced in detail to guide urologists,enhance their surgical decision-making ability,and improve the clinical outcomes.
8.Interplay Between Interferon Stimulatory Pathways and Organellar Dynamics
Jin-Ru LI ; Yu DUAN ; Xin-Gui DAI ; Yong-Ming YAO
Progress in Biochemistry and Biophysics 2025;52(7):1708-1727
Interferon stimulating factor STING, a transmembrane protein residing in the endoplasmic reticulum, is extensively involved in the sensing and transduction of intracellular signals and serves as a crucial component of the innate immune system. STING is capable of directly or indirectly responding to abnormal DNA originating from diverse sources within the cytoplasm, thereby fulfilling its classical antiviral and antitumor functions. Structurally, STING is composed of 4 transmembrane helices, a cytoplasmic ligand binding domain (LBD), and a C terminal tail structure (CTT). The transmembrane domain (TM), which is formed by the transmembrane helical structures, anchors STING to the endoplasmic reticulum, while the LBD is in charge of binding to cyclic dinucleotides (CDNs). The classical second messenger, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), represents a key upstream molecule for STING activation. Once cGAMP binds to LBD, STING experiences conformational alterations, which subsequently lead to the recruitment of Tank-binding kinase 1 (TBK1) via the CTT domain. This, in turn, mediates interferon secretion and promotes the activation and migration of dendritic cells, T cells, and natural killer cells. Additionally, STING is able to activate nuclear factor-κB (NF-κB), thereby initiating the synthesis and release of inflammatory factors and augmenting the body’s immune response. In recent years, an increasing number of studies have disclosed the non-classical functions of STING. It has been found that STING plays a significant role in organelle regulation. STING is not only implicated in the quality control systems of organelles such as mitochondria and endoplasmic reticulum but also modulates the functions of these organelles. For instance, STING can influence key aspects of organelle quality control, including mitochondrial fission and fusion, mitophagy, and endoplasmic reticulum stress. This regulatory effect is not unidirectional; rather, it is subject to organelle feedback regulation, thereby forming a complex interaction network. STING also exerts a monitoring function on the nucleus and ribosomes, which further enhances the role of the cGAS-STING pathway in infection-related immunity. The interaction mechanism between STING and organelles is highly intricate, which, within a certain range, enhances the cells’ capacity to respond to external stimuli and survival pressure. However, once the balance of this interaction is disrupted, it may result in the occurrence and development of inflammatory diseases, such as aseptic inflammation and autoimmune diseases. Excessive activation or malfunction of STING may trigger an over-exuberant inflammatory response, which subsequently leads to tissue damage and pathological states. This review recapitulates the recent interactions between STING and diverse organelles, encompassing its multifarious functions in antiviral, antitumor, organelle regulation, and immune regulation. These investigations not only deepen the comprehension of molecular mechanisms underlying STING but also offer novel concepts for the exploration of human disease pathogenesis and the development of potential treatment strategies. In the future, with further probing into STING function and its regulatory mechanisms, it is anticipated to pioneer new approaches for the treatment of complex diseases such as inflammatory diseases and tumors.
9.Association between household solid fuel use for cooking and depressive symptoms among middle-aged and elderly adults in rural China: Evidence from the China Family Panel Studies Database
Ting YANG ; Yong LIU ; Xufeng LI ; Yun GAI ; Zhihao XIE ; Junkui WANG ; Yong YU ; Jingxuan WANG
Journal of Environmental and Occupational Medicine 2025;42(8):926-931
Background Although current evidence suggests a link between outdoor air pollution and depressive symptoms, the effect of solid fuel use (a significant indoor air pollutant) on depressive symptoms in China's rural middle-aged and elderly population remains poorly understood. Objective To explore the association between solid fuel use for cooking and depressive symptoms among middle-aged and elderly people in rural areas of China, and to provide a basis for the prevention and control of depressive symptoms among residents in rural areas. Methods Data were obtained from the 2020 China Family Panel Studies (CFPS), depressive symptoms were assessed using 8-item Center for Epidemiologic Studies Depression Scale (CES-D), and cooking fuel type was self-reported. Subsequently, two-level binary unconditional logistic regression models were fitted to assess the impact of solid fuel use for cooking on depressive symptoms. Results A total of
10.Evaluation of cardiac involvement in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis using echocardiography combined with electrocardiography
Aiqing LU ; Ling CHEN ; Xiuyun SUN ; Xin DONG ; Xiaoyan LI ; Yongcun SUN ; Shaowen LYU ; Long YU ; Yong ZHANG
Chinese Journal of Radiological Health 2025;34(4):534-539
Objective To evaluate cardiac involvement in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) using echocardiography combined with electrocardiography. Methods A retrospective analysis was performed on the detailed medical records of AAV patients treated in Jining First People’s Hospital between January 2020 and December 2024. Eighty patients were enrolled in the AAV group, and the risk of heart disease was compared between the AAV group and a control group with 80 subjects matched for age, sex, and cardiovascular disease risk factors. Results Electrocardiographic abnormalities were observed in 78.75% of patients in the AAV group, while significant electrocardiographic abnormalities only occurred in symptomatic patients in the control group. There were no differences in left atrial enlargement or interventricular septal thickening between the AAV group and the control group. The overall left ventricular systolic function in the AAV group was lower than that in the control group (8.75% vs. 0). The incidence of reduced diastolic function in the AAV group was significantly higher than that in the control group (37.5% vs. 15%). The incidence rates of tricuspid regurgitation, mitral regurgitation, aortic regurgitation, and pericardial effusion in the AAV group were significantly higher than those in the control group. Pericardial thickening, aortic stenosis, pulmonary hypertension, and rare periaortic granulomas were found in the AAV group, but not in the control group. Conclusion Echocardiography and electrocardiography are important examination methods for evaluating cardiac involvement in AAV. These methods have key roles in disease screening, diagnosis and treatment, follow-up, and prognosis judgment.

Result Analysis
Print
Save
E-mail