1.Quality evaluation for Beidougen Formula Granules
Gui-Yun CAO ; Xue-Song ZHUANG ; Bo NING ; Yong-Qiang LIN ; Dai-Jie WANG ; Wei-Liang CUI ; Hong-Chao LIU ; Xiao-Di DONG ; Meng-Meng HUANG ; Zhao-Qing MENG
Chinese Traditional Patent Medicine 2024;46(3):717-723
		                        		
		                        			
		                        			AIM To evaluate the quality of Beidougen Formula Granules.METHODS Fifteen batches of standard decoctions and three batches of formula granules were prepared,after which paste rate and contents,transfer rates of magnoflorine,daurisoline,dauricine were determined.HPLC specific chromatograms were established,and cluster analysis was adopted in chemical pattern recognition.RESULTS For three batches of formula granules,the paste rates were 15.1%-16.6%,the contents of magnoflorine,daurisoline,dauricine were 18.93-19.39,9.42-9.60,6.79-6.85 mg/g with the transfer rates of 34.42%-35.25%,43.81%-44.65%,27.27%-27.51%from decoction pieces to formula granules,respectively,and there were seven characteristic peaks in the specific chromatograms with the similarities of more than 0.95,which demonstrated good consistence with those of standard decoctions and accorded with related limit requirements.Fifteen batches of standard decoctions were clustered into two types,and the medicinal materials produced from Jilin,Hebei,Shangdong could be used for the preparation of formula granules.CONCLUSION This reasonable and reliable method can provide references for the quality control and clinical application of Beidougen Formula Granules.
		                        		
		                        		
		                        		
		                        	
2.Analysis of the policy diffusion of the centralized and volume-based drug procurement in China
Yi-Bo GAO ; Zhao-Yang WANG ; Bo LYU ; Jing-Xuan ZHAO ; Jia-Xin XIE ; Yong-Xi XUE ; Yu-Run GAO ; Kai MENG
Chinese Journal of Health Policy 2024;17(9):76-82
		                        		
		                        			
		                        			Objective:To carry out the policy diffusion analysis of centralized and volume-based drug procurement in China in recent years,and to provide reference for the formulation of centralized and volume-based drug procurement policy.Methods:Through the official websites of the central and provincial governments,the official websites of the Health Commission and the official websites of the Medical Security Bureau,the policy documents related to centralized and volume-based drug procurement from January 1,2009 to December 31,2023 were searched.Based on the policy diffusion theory,the reference network analysis method is used to analyze the intensity,breadth and speed of policy diffusion,and the sequential analysis method of policy keywords is used to analyze the direction of policy diffusion.Results:In the two stages of the development of centralized and volume-based drug procurement policy,the number of policies issued in the medical insurance management stage reached the peak;The top ten policies with the highest diffusion intensity and breadth are all central policies,and most of them are notices and opinions.In addition,the newly promulgated policies have a faster diffusion speed.In the direction of diffusion,top-down and parallel diffusion trends are obvious.Conclusion:The diffusion of centralized and volume-based drug procurement policy in China focuses on the central policy,and the diffusion speed is increasing year by year.It is suggested to strengthen the policy coordination between the central and local governments,establish a unified national information platform for centralized drug procurement,optimize the learning and competition mechanism between governments at all levels,and give play to the advantages of"policy experiment".
		                        		
		                        		
		                        		
		                        	
3.Analysis of clinical features and risk factors of acute pancreatitis with metabolic syndrome
Yong-Hong ZHAO ; Ai-Rong CHEN ; Meng-Ru HU ; Yi-Xin WANG ; Gui-Rong YI
Modern Interventional Diagnosis and Treatment in Gastroenterology 2024;29(6):664-669
		                        		
		                        			
		                        			Objective To investigate the clinical features and prognosis of acute pancreatitis(AP)complicated with metabolic syndrome(MS).Methods 139 AP patients were retrospectively selected and divided into MS group(76 cases)and non-MS group(63 cases),general data of the two groups were collected and analyzed;conservative treatment was given to 2 groups of patients,and the general conditions,laboratory indicators,comorbidities,and related indicators of disease severity of the two groups were compared and analyzed,and the influencing factors of poor prognosis in patients(AP combined with MS)were analyzed.Results Compared with non-MS group,HDL,Ca2+in MS group decreased significantly,Body weight、Body Mass Index(BMI)、diabetes mellitus、hypertension(systolic/diastolic blood pressure)、hyperlipidemia、white blood cell count、CRP、PCT、IL-6、FPG、UA、TC、TG、TyG、TYG-BMI and non-traditional lipid parameters TC/HDL-C、TG/HDL-C、LDL-C/HDL-C and non-HDL-C were significantly increased.There were no significant differences in age、sex、length of stay、BUN、CREA、LDL-C、ALT and AST between the two groups(P>0.05);BMI,white blood cell count,CRP,IL-6,FPG,UA,TC,TG,TyG,TYG-BMI,TC/HDL-C,TG/HDL-C,LDL-C/HDL-C,and non-HDL-C were independent risk factors for poor prognosis in AP patients with MS,and HDL-C was a potential protective factor for prognosis in AP patients with MS,the difference was statistically significant(P<0.05).Conclusion With the change of modern lifestyle,there are more and more MS patients,and the incidence of MS patients with AP is gradually increasing.TyG,TYG-BMI and non-traditional lipid parameters are novel,convenient and practical markers for clinical evaluation,which have a high diagnostic and predictive value for AP with MS metabolic abnormalities,and provides clinical basis for management and intervention.
		                        		
		                        		
		                        		
		                        	
4.Multicenter evaluation of the diagnostic efficacy of jaundice color card for neonatal hyperbilirubinemia
Guochang XUE ; Huali ZHANG ; Xuexing DING ; Fu XIONG ; Yanhong LIU ; Hui PENG ; Changlin WANG ; Yi ZHAO ; Huili YAN ; Mingxing REN ; Chaoying MA ; Hanming LU ; Yanli LI ; Ruifeng MENG ; Lingjun XIE ; Na CHEN ; Xiufang CHENG ; Jiaojiao WANG ; Xiaohong XIN ; Ruifen WANG ; Qi JIANG ; Yong ZHANG ; Guijuan LIANG ; Yuanzheng LI ; Jianing KANG ; Huimin ZHANG ; Yinying ZHANG ; Yuan YUAN ; Yawen LI ; Yinglin SU ; Junping LIU ; Shengjie DUAN ; Qingsheng LIU ; Jing WEI
Chinese Journal of Pediatrics 2024;62(6):535-541
		                        		
		                        			
		                        			Objective:To evaluate the diagnostic efficacy and practicality of the Jaundice color card (JCard) as a screening tool for neonatal jaundice.Methods:Following the standards for reporting of diagnostic accuracy studies (STARD) statement, a multicenter prospective study was conducted in 9 hospitals in China from October 2019 to September 2021. A total of 845 newborns who were admitted to the hospital or outpatient department for liver function testing due to their own diseases. The inclusion criteria were a gestational age of ≥35 weeks, a birth weight of ≥2 000 g, and an age of ≤28 days. The neonate′s parents used the JCard to measure jaundice at the neonate′s cheek. Within 2 hours of the JCard measurement, transcutaneous bilirubin (TcB) was measured with a JH20-1B device and total serum bilirubin (TSB) was detected. The Pearson′s correlation analysis, Bland-Altman plots and the receiver operating characteristic (ROC) curve were used for statistic analysis.Results:Out of the 854 newborns, 445 were male and 409 were female; 46 were born at 35-36 weeks of gestational age and 808 were born at ≥37 weeks of gestational age. Additionally, 432 cases were aged 0-3 days, 236 cases were aged 4-7 days, and 186 cases were aged 8-28 days. The TSB level was (227.4±89.6) μmol/L, with a range of 23.7-717.0 μmol/L. The JCard level was (221.4±77.0) μmol/L and the TcB level was (252.5±76.0) μmol/L. Both the JCard and TcB values showed good correlation ( r=0.77 and 0.80, respectively) and agreements (96.0% (820/854) and 95.2% (813/854) of samples fell within the 95% limits of agreement, respectively) with TSB. The JCard value of 12 had a sensitivity of 0.93 and specificity of 0.75 for identifying a TSB ≥205.2?μmol/L, and a sensitivity of 1.00 and specificity of 0.35 for identifying a TSB ≥342.0?μmol/L. The TcB value of 205.2?μmol/L had a sensitivity of 0.97 and specificity of 0.60 for identifying TSB levels of 205.2 μmol/L, and a sensitivity of 1.00 and specificity of 0.26 for identifying TSB levels of 342.0 μmol/L. The areas under the ROC curve (AUC) of JCard for identifying TSB levels of 153.9, 205.2, 256.5, and 342.0 μmol/L were 0.96, 0.92, 0.83, and 0.83, respectively. The AUC of TcB were 0.94, 0.91, 0.86, and 0.87, respectively. There were both no significant differences between the AUC of JCard and TcB in identifying TSB levels of 153.9 and 205.2 μmol/L (both P>0.05). However, the AUC of JCard were both lower than those of TcB in identifying TSB levels of 256.5 and 342.0 μmol/L (both P<0.05). Conclusions:JCard can be used to classify different levels of bilirubin, but its diagnostic efficacy decreases with increasing bilirubin levels. When TSB level are ≤205.2 μmol/L, its diagnostic efficacy is equivalent to that of the JH20-1B. To prevent the misdiagnosis of severe jaundice, it is recommended that parents use a low JCard score, such as 12, to identify severe hyperbilirubinemia (TSB ≥342.0 μmol/L).
		                        		
		                        		
		                        		
		                        	
5.Leukocyte cell-derived chemotaxin 2(LECT2)regulates liver ischemia-reperfusion injury
Dong MENG-QI ; Xie YUAN ; Tang ZHI-LIANG ; Zhao XUE-WEN ; Lin FU-ZHEN ; Zhang GUANG-YU ; Huang ZHI-HAO ; Liu ZHI-MIN ; Lin YUAN ; Liu FENG-YONG ; Zhou WEI-JIE
Liver Research 2024;8(3):165-171
		                        		
		                        			
		                        			Background and aim:Hepatic ischemia-reperfusion injury(IRI)is a significant challenge in liver trans-plantation,trauma,hypovolemic shock,and hepatectomy,with limited effective interventions available.This study aimed to investigate the role of leukocyte cell-derived chemotaxin 2(LECT2)in hepatic IRI and assess the therapeutic potential of Lect2-short hairpin RNA(shRNA)delivered through adeno-associated virus(AAV)vectors. Materials and methods:This study analyzed human liver and serum samples from five patients under-going the Pringle maneuver.Lect2-knockout and C57BL/6J mice were used.Hepatic IRI was induced by clamping the hepatic pedicle.Treatments included recombinant human LECT2(rLECT2)and AAV-Lect2-shRNA.LECT2 expression levels and serum biomarkers including alanine aminotransferase(ALT),aspartate aminotransferase(AST),creatinine,and blood urea nitrogen(BUN)were measured.Histological analysis of liver necrosis and quantitative reverse-transcription polymerase chain reaction were performed. Results:Serum and liver LECT2 levels were elevated during hepatic IRI.Serum LECT2 protein and mRNA levels increased post reperfusion.Lect2-knockout mice had reduced weight loss;hepatic necrosis;and serum ALT,AST,creatinine,and BUN levels.rLECT2 treatment exacerbated weight loss,hepatic necrosis,and serum biomarkers(ALT,AST,creatinine,and BUN).AAV-Lect2-shRNA treatment significantly reduced weight loss,hepatic necrosis,and serum biomarkers(ALT,AST,creatinine,and BUN),indicating thera-peutic potential. Conclusions:Elevated LECT2 levels during hepatic IRI increased liver damage.Genetic knockout or shRNA-mediated knockdown of Lect2 reduced liver damage,indicating its therapeutic potential.AAV-mediated Lect2-shRNA delivery mitigated hepatic IRI,offering a potential new treatment strategy to enhance clinical outcomes for patients undergoing liver-related surgeries or trauma.
		                        		
		                        		
		                        		
		                        	
6.Clinical efficacy of patient-specific instrumentation assisted unicompartmental knee arthroplasty
Xiangyu MENG ; Zhixue WANG ; Peng WU ; Huanming FANG ; Peng ZHAO ; Xu WANG ; Yong DING
Chinese Journal of Orthopaedics 2024;44(22):1441-1449
		                        		
		                        			
		                        			Objective:To investigate the postoperative prosthesis position and early clinical efficacy of 3D printing patient-specific instrumentation (PSI)-assisted unicompartmental knee arthroplasty (UKA).Methods:The clinical data of 15 patients (17 knees, PSI group) with medial compartment knee osteoarthritis who underwent PSI-assisted UKA in the Second Affiliated Hospital, the Air Force Medical University from May to August 2023 were retrospectively analyzed, matched with fifteen patients (17 knees, non-PSI group) with medial compartment knee osteoarthritis undergoing conventional UKA. The differences in the prosthesis placement positions in the postoperative X-ray films between the two groups were compared, including the coronal varus-valgus angles of the tibial and femoral prostheses, the sagittal posterior inclination angle of the tibial prosthesis, the flexion-extension angle of the femoral prosthesis, and the height of the reconstructed joint line. The indicators related to the lower limb alignment (including the femoral valgus angle, the lateral femoral angle, the hip-knee-ankle angle, and the femur-tibia angle) and the range of motion of the knee joint before and after the operation were compared. The Oxford knee score (OKS), American Knee Society (AKS) knee score and function score, and the visual analogue scale (VAS) were used to evaluate the clinical effects of the two groups.Results:In the PSI group, the coronal varus-valgus angle of the tibial prosthesis was 1.6°±0.3° after the operation, and the sagittal posterior inclination angle was 5.7°±0.8°. The coronal varus-valgus angle of the femoral prosthesis was -0.5°±1.5°, and the sagittal flexion-extension angle was 4.0°±1.9°. In the non-PSI group, the corresponding angles were 2.3°±0.6°, 4.5°±1.0°, 1.4°±1.5°, and 7.3°±2.2° respectively with significant differences between the two groups ( P<0.05). The OKS of the PSI group before and after the operation were 26.5±1.8 and 38.6±4.1 points respectively. The AKS knee score were 56.9±8.6 and 89.2±7.2 points. The AKS function score were 70.1±4.2 and 77.5±9.4 points. The VAS were 4.5±3.7 and 2.3±0.3 points, and the range of motion of the knee joint were 115.2°±4.8° and 125.9°±4.6° with significant differences ( P<0.05). The OKS of the non-PSI group before and after the operation were 25.3±6.2 and 38.2±3.5 points respectively. The AKS knee score were 50.6±9.3 and 84.5±6.6 points. The AKS function score were 73.4±3.9 and 77.2±4.8 points. The VAS were 5.8±2.4 and 2.5±1.6 points, and the range of motion of the knee joint were 113.6°±6.7° and 122.3°±5.0° with significant differences ( P<0.05). There were inter-group differences in the AKS knee score and the range of motion of the knee joint after the operation between the two groups with significant differences ( P<0.05). Conclusion:PSI guides-assisted UKA can effectively correct the lower limb alignment of patients and improve knee joint function with good short-term efficacy. Compared with conventional UKA, PSI guides-assisted UKA is less time-consuming with higher precision in prosthesis installation position and fewer post-operative complications.
		                        		
		                        		
		                        		
		                        	
7.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
		                        		
		                        			
		                        			Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
		                        		
		                        		
		                        		
		                        	
8.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
		                        		
		                        			
		                        			Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
		                        		
		                        		
		                        		
		                        	
9.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
		                        		
		                        			
		                        			Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
		                        		
		                        		
		                        		
		                        	
10.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
		                        		
		                        			
		                        			Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail