1.Primary Cholangiocarcinoma of the Liver Presenting as a Complicated Hepatic Cyst: A Diagnostic Challenge
Chang Won HA ; Sang Deok SHIN ; Myung Ji GOH ; Byeong Geun SONG ; Wonseok KANG ; Dong Hyun SINN ; Geum-Youn GWAK ; Yong-Han PAIK ; Moon Seok CHOI ; Joon Hyeok LEE
The Korean Journal of Gastroenterology 2025;85(1):83-88
Primary cholangiocarcinoma is a rare bile duct epithelial neoplasm that can present with atypical clinical manifestations, complicating its diagnosis. A 62-year-old male showed symptoms suggestive of a complicated hepatic cyst that was later identified as intrahepatic cholangiocarcinoma. The patient presented with abdominal discomfort without fever. Imaging revealed a large cystic lesion in the liver. Despite the initial treatment for a presumed abscess, a biopsy confirmed cholangiocarcinoma. This case highlights the diagnostic challenge of distinguishing between benign complicated hepatic cysts and malignancies, particularly when typical markers of infection are absent. Early biopsy and vigilant assessments are crucial in such presentations to avoid a delayed diagnosis and initiate appropriate treatment.
2.Miliary Tuberculosis Initially Presenting as an Isolated Hepatic Abscess
Chang Won HA ; Sang Deok SHIN ; Myung Ji GOH ; Byeong Geun SONG ; Wonseok KANG ; Dong Hyun SINN ; Geum-Youn GWAK ; Yong-Han PAIK ; Moon Seok CHOI ; Joon Hyeok LEE
The Korean Journal of Gastroenterology 2025;85(1):78-82
Hepatic tuberculosis, typically associated with miliary tuberculosis, can occasionally present as localized liver lesions. This case report describes a 77-year-old male presenting with persistent abdominal pain and fever, following an endoscopic retrograde cholangiopancreatography for bile duct sludge removal. Subsequent computed tomography revealed focal liver lesions. Despite initial treatment with antibiotics for a suspected inflammatory liver abscess, his condition did not improve. A liver biopsy was performed, revealing caseous granulomas, and the tuberculosis polymerase chain reaction result was positive. The patient was diagnosed with primary hepatic tuberculosis, which later disseminated. Oral anti-tuberculosis therapy was initiated and is currently being closely monitored. This case emphasizes the importance of considering hepatic tuberculosis in the differential diagnosis of liver lesions, particularly in cases involving cholestatic liver function tests, and persistent symptoms unresponsive to conventional antibiotics.
3.Korean Guidelines for Diagnosis and Management of Idiopathic Nonspecific Interstitial Pneumonia
Yong Suk JO ; Hyun-Kyung LEE ; Sun Hyo PARK ; Joon Sung JOH ; Hye Jin JANG ; Jong Sun PARK ;
Tuberculosis and Respiratory Diseases 2025;88(2):237-246
Idiopathic nonspecific interstitial pneumonia (iNSIP) is recognized as a distinct entity among various types of idiopathic interstitial pneumonias. It is identified histologically by the nonspecific interstitial pneumonia pattern. A diagnosis of iNSIP is feasible once secondary causes or underlying diseases are ruled out. Usually presenting with respiratory symptoms such as shortness of breath and cough, iNSIP has a subacute or chronic course. It predominantly affects females aged 50 to 60 years who are non-smokers. Key imaging findings on chest high-resolution computed tomography include bilateral reticular opacities in lower lungs, traction bronchiectasis, reduced lung volumes and, ground-glass opacities. Abnormalities are typically diffuse across both lungs with subpleural distributions. Treatment often involves systemic steroids, either alone or in combination with other immunosuppressants, although evidence supporting effectiveness of these treatments is limited. Prognosis is generally more favorable for iNSIP than for idiopathic pulmonary fibrosis, with many studies reporting a 5-year survival rate above 70%. Antifibrotic agents should be considered in a condition, termed progressive pulmonary fibrosis, where pulmonary fibrosis progressively worsens.
4.High-Dose Rifampicin for 3 Months after Culture Conversion for Drug-Susceptible Pulmonary Tuberculosis
Nakwon KWAK ; Joong-Yub KIM ; Hyung-Jun KIM ; Byoung-Soo KWON ; Jae Ho LEE ; Jeongha MOK ; Yong-Soo KWON ; Young Ae KANG ; Youngmok PARK ; Ji Yeon LEE ; Doosoo JEON ; Jung-Kyu LEE ; Jeong Seong YANG ; Jake WHANG ; Kyung Jong KIM ; Young Ran KIM ; Minkyoung CHEON ; Jiwon PARK ; Seokyung HAHN ; Jae-Joon YIM
Tuberculosis and Respiratory Diseases 2025;88(1):170-180
Background:
This study aimed to determine whether a shorter high-dose rifampicin regimen is non-inferior to the standard 6-month tuberculosis regimen.
Methods:
This multicenter, randomized, open-label, non-inferiority trial enrolled participants with respiratory specimen positivity by Xpert MTB/RIF assay or Mycobacterium tuberculosis culture without rifampicin-resistance. Participants were randomized at 1:1 to the investigational or control group. The investigational group received high-dose rifampicin (30 mg/kg/day), isoniazid, and pyrazinamide until culture conversion, followed by high-dose rifampicin and isoniazid for 12 weeks. The control group received the standard 6-month regimen. The primary outcome was the rate of unfavorable outcomes at 18 months post-randomization. The non-inferiority margin was set at <6% difference in unfavorable outcomes rates. The study is registered with ClinicalTrials.gov (NCT04485156)
Results:
Between 4 November 2020 and 3 January 2022, 76 participants were enrolled. Of these, 58 were included in the modified intention-to-treat analysis. Unfavorable outcomes occurred in 10 (31.3%) of 32 in the control group and 10 (38.5%) of 26 in the investigational group. The difference was 7.2% (95% confidence interval, ∞ to 31.9%), failing to prove non-inferiority. Serious adverse events and grade 3 or higher adverse events did not differ between the groups.
Conclusion
The shorter high-dose rifampicin regimen failed to demonstrate non-inferiority but had an acceptable safety profile.
5.18F-FDOPA PET/CT in Oncology: Procedural Guideline by the KoreanSociety of Nuclear Medicine
Yong-Jin PARK ; Joon Ho CHOI ; Hyunjong LEE ; Seung Hwan MOON ; Inki LEE ; Joohee LEE ; Jang YOO ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):41-49
This guideline outlines the use of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for the diagnosis and management of neuroendocrine tumors, brain tumors, and other tumorous conditions. It provides detailed recommendations on patient preparation, imaging procedures, and result interpretation. Based on inter-national standards and adapted to local clinical practices, the guideline emphasizes safety, quality control, and the effec-tive application of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for various tumors such as insulinomas, pheochromocytomas, and medullary thyroid carcinoma. It also addresses the use of premedication with carbidopa, fasting protocols, and optimal imaging techniques. The aim is to assist nuclear medicine professionals in delivering precise diagnoses, improving patient outcomes, and accommodating evolving medical knowl-edge and technology. This comprehensive document serves as a practical resource to enhance the accuracy, quality, and safety of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography in oncology.
6.18F‑FDG PET/CT in Inflammation and Infection: Procedural Guidelineby the Korean Society of Nuclear Medicine
Joon Ho CHOI ; Yong‑Jin PARK ; Hyunjong LEE ; Hye Ryeong KWON ; Jinkyoung OH ; Chae Hong LIM ; Eun Ji HAN ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):27-40
This guideline outlines the use of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the diagnosis and management of infectious and inflammatory diseases. It provides detailed recommendations for healthcare providers on patient preparation, imaging procedures, and the interpretation of results. Adapted from international standards and tailored to local clinical practices, the guideline emphasizes safety, quality control, and effective use of the technology in various conditions, including spinal infections, diabetic foot, osteomyelitis, vasculitis, and cardiac inflammation. The aim is to assist nuclear medicine professionals in delivering accurate diagnoses and improving patient outcomes while allowing flexibility to adapt to individual patient needs, technological advancements, and evolving medical knowledge. This document is a comprehensive resource for enhancing the quality and safety of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the evaluation of infectious and inflammatory diseases.Preamble The Korean Society of Nuclear Medicine (KSNM) was established in 1961 to promote the clinical and technological advancement of nuclear medicine in South Korea, with members that include nuclear medicine physicians and associated scientists. The KSNM regularly formulates and revises procedural guidelines for nuclear medicine examinations to enhance the field and improve the quality of patient care. These guidelines are designed to support healthcare professionals in providing appropriate medical care to patients. However, they are not immutable rules or mandatory requirements for conducting examinations.Therefore, KSNM states that these guidelines should not be used in legal actions challenging a healthcare professional’s medical decisions. The ultimate judgment regarding specific procedures or appropriate measures should be made by nuclear medicine physicians, considering the unique circumstances of each case. Deviation from these guidelines does not imply substandard medical practice. Rather, reasonable judgments differing from the guidelines can be made based on the patient’s condition, available resources, and advancements in knowledge or technology. Due to the diversity and complexity of patients, it is often challenging to predict the most appropriate diagnostic and accurate therapeutic responses. Thus, adherence to these guidelines does not always guarantee an exact diagnosis or successful outcomes.The purpose of this guideline is to assist healthcare providers in making reasonable decisions and conducting effective and safe examinations based on current medical knowledge, available resources, and patient needs when performing 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) examinations for infectious/ inflammatory diseases.
7.Adjusted Global Antiphospholipid Syndrome Score Is Associated with End-Stage Kidney Disease in Patients with ANCA-Associated Vasculitis:A Single-Centre Pilot Study
Pil Gyu PARK ; Hyun Joon CHOI ; Yong-Beom PARK ; Sang-Won LEE
Yonsei Medical Journal 2025;66(6):337-345
Purpose:
The adjusted Global Antiphospholipid Syndrome (APS) Score (aGAPSS) was developed for assessing the probability of thrombotic events in APS patients. This study investigated whether the aGAPSS at diagnosis was associated with poor outcomes during follow-up in patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV).
Materials and Methods:
This study included 170 AAV patients who had the results of APS-related antibodies at diagnosis but were not diagnosed with APS. All-cause mortality, end-stage kidney disease (ESKD), cerebrovascular accident, and acute coronary syndrome were considered poor AAV outcomes. The aGAPSS comprises five items, with 5, 4, 4, 3, and 1 points assigned to anticardiolipin antibodies, anti-β2-glycoprotein 1 antibodies, lupus anticoagulants, hyperlipidaemia, and arterial hypertension at AAV diagnosis, respectively.
Results:
The median age of the 170 patients [93 microscopic polyangiitis (MPA), 44 granulomatosis with polyangiitis (GPA), and 33 eosinophilic GPA (EGPA)] was 63.0 years. The optimal cut-off of the aGAPSS at diagnosis for ESKD during follow-up was set as two using the receiver operating characteristic curve. AAV patients with an aGAPSS ≥2 at diagnosis exhibited a significantly reduced ESKD-free survival rate compared to those with an aGAPSS <2 at diagnosis (p=0.045). Additionally, MPA and GPA patients, excluding EGPA patients for whom the median aGAPSS at diagnosis was close to 0, also showed similar patterns to the results among the 170 patients with AAV (p=0.021).
Conclusion
This study is the first to demonstrate that the aGAPSS at diagnosis was significantly associated with ESKD during follow-up in AAV patients without APS.
8.Coexisting Macular Hole and Uveal Melanoma: A Case Series and Literature Review
Yeji KIM ; So Hyun YU ; Yong Joon KIM ; Eun Young CHOI ; Sung Chul LEE ; Christopher Seungkyu LEE
Korean Journal of Ophthalmology 2025;39(2):170-180
Purpose:
To report five cases of macular hole (MH) coexisting with uveal melanoma (UM) and review the literature.
Methods:
Seventeen patients (5 new and 12 from previous reports) with coexisting MH and UM were reviewed. The patients were divided into two groups based on whether the MH was diagnosed before or after tumor treatment. The clinical features, pathogenesis, management options, and clinical outcomes were reviewed.
Results:
Of 505 patients with UM in our institution, 5 (1.0%) had a concurrent MH in the ipsilateral eye. The 17 patients reviewed had a mean age of 63.9 years at the time of MH diagnosis. Of 16 patients with available data on sex, 11 (64.7%) were female. There were no major differences in the demographic or clinical data of the groups. Of the 15 known tumor locations, 6 (35.3%) were juxtapapillary or macular. In patients who developed MH after UM treatment, the durations from tumor treatment (radiotherapy or transpupillary thermotherapy) to MH diagnosis were 3 to 56 months (median, 8.5 months). MH surgery was performed in nine eyes, and hole closure was achieved in seven eyes with postoperative data. The mean visual acuity showed a tendency of improvement after surgery. No intraocular or extraocular tumor dissemination associated with surgery was observed.
Conclusions
MH is observed in approximately 1% of patients with UM, either before or after tumor treatment. Of patients with coexisting MH and UM, MH surgery appears to be safe and effective in those with stable tumors and visual potential.
9.18F-FDOPA PET/CT in Oncology: Procedural Guideline by the KoreanSociety of Nuclear Medicine
Yong-Jin PARK ; Joon Ho CHOI ; Hyunjong LEE ; Seung Hwan MOON ; Inki LEE ; Joohee LEE ; Jang YOO ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):41-49
This guideline outlines the use of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for the diagnosis and management of neuroendocrine tumors, brain tumors, and other tumorous conditions. It provides detailed recommendations on patient preparation, imaging procedures, and result interpretation. Based on inter-national standards and adapted to local clinical practices, the guideline emphasizes safety, quality control, and the effec-tive application of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for various tumors such as insulinomas, pheochromocytomas, and medullary thyroid carcinoma. It also addresses the use of premedication with carbidopa, fasting protocols, and optimal imaging techniques. The aim is to assist nuclear medicine professionals in delivering precise diagnoses, improving patient outcomes, and accommodating evolving medical knowl-edge and technology. This comprehensive document serves as a practical resource to enhance the accuracy, quality, and safety of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography in oncology.
10.18F‑FDG PET/CT in Inflammation and Infection: Procedural Guidelineby the Korean Society of Nuclear Medicine
Joon Ho CHOI ; Yong‑Jin PARK ; Hyunjong LEE ; Hye Ryeong KWON ; Jinkyoung OH ; Chae Hong LIM ; Eun Ji HAN ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):27-40
This guideline outlines the use of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the diagnosis and management of infectious and inflammatory diseases. It provides detailed recommendations for healthcare providers on patient preparation, imaging procedures, and the interpretation of results. Adapted from international standards and tailored to local clinical practices, the guideline emphasizes safety, quality control, and effective use of the technology in various conditions, including spinal infections, diabetic foot, osteomyelitis, vasculitis, and cardiac inflammation. The aim is to assist nuclear medicine professionals in delivering accurate diagnoses and improving patient outcomes while allowing flexibility to adapt to individual patient needs, technological advancements, and evolving medical knowledge. This document is a comprehensive resource for enhancing the quality and safety of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the evaluation of infectious and inflammatory diseases.Preamble The Korean Society of Nuclear Medicine (KSNM) was established in 1961 to promote the clinical and technological advancement of nuclear medicine in South Korea, with members that include nuclear medicine physicians and associated scientists. The KSNM regularly formulates and revises procedural guidelines for nuclear medicine examinations to enhance the field and improve the quality of patient care. These guidelines are designed to support healthcare professionals in providing appropriate medical care to patients. However, they are not immutable rules or mandatory requirements for conducting examinations.Therefore, KSNM states that these guidelines should not be used in legal actions challenging a healthcare professional’s medical decisions. The ultimate judgment regarding specific procedures or appropriate measures should be made by nuclear medicine physicians, considering the unique circumstances of each case. Deviation from these guidelines does not imply substandard medical practice. Rather, reasonable judgments differing from the guidelines can be made based on the patient’s condition, available resources, and advancements in knowledge or technology. Due to the diversity and complexity of patients, it is often challenging to predict the most appropriate diagnostic and accurate therapeutic responses. Thus, adherence to these guidelines does not always guarantee an exact diagnosis or successful outcomes.The purpose of this guideline is to assist healthcare providers in making reasonable decisions and conducting effective and safe examinations based on current medical knowledge, available resources, and patient needs when performing 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) examinations for infectious/ inflammatory diseases.

Result Analysis
Print
Save
E-mail