1.Study on accumulation of polysaccharide and steroid components in Polyporus umbellatus infected by Armillaria spp.
Ming-shu YANG ; Yi-fei YIN ; Juan CHEN ; Bing LI ; Meng-yan HOU ; Chun-yan LENG ; Yong-mei XING ; Shun-xing GUO
Acta Pharmaceutica Sinica 2025;60(1):232-238
In view of the few studies on the influence of
5.Interplay Between Interferon Stimulatory Pathways and Organellar Dynamics
Jin-Ru LI ; Yu DUAN ; Xin-Gui DAI ; Yong-Ming YAO
Progress in Biochemistry and Biophysics 2025;52(7):1708-1727
Interferon stimulating factor STING, a transmembrane protein residing in the endoplasmic reticulum, is extensively involved in the sensing and transduction of intracellular signals and serves as a crucial component of the innate immune system. STING is capable of directly or indirectly responding to abnormal DNA originating from diverse sources within the cytoplasm, thereby fulfilling its classical antiviral and antitumor functions. Structurally, STING is composed of 4 transmembrane helices, a cytoplasmic ligand binding domain (LBD), and a C terminal tail structure (CTT). The transmembrane domain (TM), which is formed by the transmembrane helical structures, anchors STING to the endoplasmic reticulum, while the LBD is in charge of binding to cyclic dinucleotides (CDNs). The classical second messenger, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), represents a key upstream molecule for STING activation. Once cGAMP binds to LBD, STING experiences conformational alterations, which subsequently lead to the recruitment of Tank-binding kinase 1 (TBK1) via the CTT domain. This, in turn, mediates interferon secretion and promotes the activation and migration of dendritic cells, T cells, and natural killer cells. Additionally, STING is able to activate nuclear factor-κB (NF-κB), thereby initiating the synthesis and release of inflammatory factors and augmenting the body’s immune response. In recent years, an increasing number of studies have disclosed the non-classical functions of STING. It has been found that STING plays a significant role in organelle regulation. STING is not only implicated in the quality control systems of organelles such as mitochondria and endoplasmic reticulum but also modulates the functions of these organelles. For instance, STING can influence key aspects of organelle quality control, including mitochondrial fission and fusion, mitophagy, and endoplasmic reticulum stress. This regulatory effect is not unidirectional; rather, it is subject to organelle feedback regulation, thereby forming a complex interaction network. STING also exerts a monitoring function on the nucleus and ribosomes, which further enhances the role of the cGAS-STING pathway in infection-related immunity. The interaction mechanism between STING and organelles is highly intricate, which, within a certain range, enhances the cells’ capacity to respond to external stimuli and survival pressure. However, once the balance of this interaction is disrupted, it may result in the occurrence and development of inflammatory diseases, such as aseptic inflammation and autoimmune diseases. Excessive activation or malfunction of STING may trigger an over-exuberant inflammatory response, which subsequently leads to tissue damage and pathological states. This review recapitulates the recent interactions between STING and diverse organelles, encompassing its multifarious functions in antiviral, antitumor, organelle regulation, and immune regulation. These investigations not only deepen the comprehension of molecular mechanisms underlying STING but also offer novel concepts for the exploration of human disease pathogenesis and the development of potential treatment strategies. In the future, with further probing into STING function and its regulatory mechanisms, it is anticipated to pioneer new approaches for the treatment of complex diseases such as inflammatory diseases and tumors.
6.Development and Application of a Micro-device for Rapid Detection of Ammonia Nitrogen in Environmental Water
Peng WANG ; Yong TIAN ; Chuan-Yu LIU ; Wei-Liang WANG ; Xu-Wei CHEN ; Yan-Feng ZHANG ; Ming-Li CHEN ; Jian-Hua WANG
Chinese Journal of Analytical Chemistry 2024;52(2):178-186,中插1-中插3
The analysis of ammonia nitrogen in real water samples is challenging due to matrix interferences and difficulties for rapid on-site analysis.On the basis of the standard method,i.e.water quality-determination of ammonia nitrogen-salicylic acid spectrophotometry(HJ 536-2009),a simple device for online detecting ammonia nitrogen was developed using a sequential injection analysis(SIA)system in this work.The ammonia nitrogen transformation system,color reaction system,and detection system were built in compatible with the SIA system,respectively.In particular,the detection system was assembled by employing light-emitting diode as the light source,photodiode as the detector,and polyvinylchloride tube as the cuvette,thus significantly reducing the volume,energy consumption and fabricating cost of the detection system.As a result,the accurate analysis of ammonia nitrogen in complex water samples was achieved.A quantitative detection of ammonia nitrogen in water sample was obtained in 12 min,along with linear range extending to 1000 μmol/L,precisions(Relative standard deviation,RSD)of 4.3%(C=10 μmol/L,n=7)and 4.2%(C=500 μmol/L,n=7),and limit of detection(LOD)of 0.65 μmol/L(S/N=3,n=7).The results of interfering experiments showed that the detection of ammonia nitrogen by the developed device was not interfered by the common coexisting ions and components,therefore the environmental water could be directly analyzed,such as reservoir water,domestic sewage,sea water and leachate of waste landfill.The analytical results were consistent with those obtained by the environmental protection standard method(Water quality determination of ammonia nitrogen-salicylic acid spectrophotometry,HJ 536-2009).In addition,the spiking recoveries were in the range of 92.3%-98.1%,further confirming the accuracy and practicality of the developed device.
7.Effects of Baicalin on the Expressions of JAK1 and STAT3 in Mice with Chronic Atrophic Gastritis
Li-Ying DUAN ; Ming-Yang ZHU ; Yong YU ; Han HAN ; Ye DING
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):200-206
Objective To investigate the repair mechanism of baicalin on gastric mucosa of chronic atrophic gastritis mice based on the network pharmacology and animal experiments.Methods(1)Applied network pharmacology to predict and analyze the potential key targets of baicalin in the treatment of chronic atrophic gastritis.(2)Animal experiment:40 C57BL/6N mice were randomly divided into normal group,model group,Vitacoenzyme group and baicalin group,10 mice in each group.Except for the normal group,the other three groups of mice were treated with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)by gavage combined with hunger and satiety disorder method to construct a chronic atrophic gastritis model.At the end of drug administration,the histopathological changes of gastric mucosa were observed by hematoxylin-eosin(HE)staining,the changes of gastrin(GAS)and prostaglandin E2(PGE2)levels in serum were detected by enzyme-linked immunosorbent assay(ELISA),and the mRNA and protein expression levels of Janus tyrosine kinase 1(JAK1),signal transducer and activator of transcription 3(STAT3)in the gastric mucosa were detected by real-time fluorescence quantitative polymerase chain reaction(qRT-PCR)and protein immunoblotting(Western Blot)methods,respectively.Results The results of network pharmacology showed that baicalin could spontaneously bind to the core targets JAK1 and STAT3.The results of animal experiments showed that compared with the normal group,the gastric mucosa of mice in the model group suffered from atrophy,disordered gland arrangement,the presence of a large number of lymphocytes,a significant increase in apoptotic index of the gastric mucosa(P<0.05),a significant decrease in the levels of GAS and PGE2 in serum(P<0.05),and a significant increase in the levels of mRNA and protein expressions of JAK1 and STAT3 in the gastric mucosa(P<0.05);compared with the model group,the pathological changes of gastric mucosa in the Vitacoenzyme group and baicalin group were alleviated,the glands were arranged relatively neatly,the structure was more intact,the apoptosis index of gastric mucosal cells was significantly decreased(P<0.05),the levels of GAS and PGE2 in serum were significantly increased(P<0.05),and the mRNA and protein expression levels of JAK1 and STAT3 in gastric mucosa were significantly decreased(P<0.05).There was no significant difference in the above-mentioned indexes between the baicalin group and the Vitacoenzyme group(P>0.05).Conclusion Baicalin can effectively repair gastric mucosal lesions in mice with chronic atrophic gastritis,and its mechanism may be related to the down-regulation of mRNA and protein expressions of JAK1 and STAT3.
8.Factor analysis of pain after arthroscopic rotator cuff suture bridge
Li-Na SI ; Jin-Wei LUO ; Di WU ; Yue-Bing QIAO ; Yong-Ming LÜ ; Cong XU
Acta Anatomica Sinica 2024;55(2):210-214
Objective To analyze the factors associated with pain after arthroscopic rotator cuff bridge suture.Methods According to the inclusion and exclusion criteria,the data of 112 patients with unilateral rotator cuff injury who received arthroscopic bridge suture in our department were collected and were investigated in the form of telephone follow-up.In this study,SPSS 23.0 was used to input data and conduct statistical analysis.Logistic regression analysis was used to analyze the correlation between the above influencing factors and postoperative pain.Results A total of 112 patients were included for statistical analysis,single factor analysis revealed,including course of disease,smoking history,preoperative University of California,Los Angeles(UCLA)score,Constant score,numeric rating scale(NRS),size of rotator cuff tear,whether it was full-thickness tear and degree of tendon retraction might be related to postoperative pain(P<0.05).The age,gender,body mass index(BMI),drinking history,diabetes and hypertension were not related to postoperative pain(P>0.05).Multiple linear regression analysis concluded that there were four factors related to postoperative pain,and the correlation degree was preoperative NRS,preoperative UCLA score,tear size and smoking history.Conclusion The causes of postoperative pain after arthroscopic rotator cauff repair are complex and diverse.Analyzing the cause of postoperative pain can effectively reduce the pain of patients and promote the recovery of shoulder joint function.
9.miR-375 Attenuates The Migration and Invasion of Osteosarcoma Cells by Targeting MMP13
Zhong LIU ; Lei HE ; Jian XIAO ; Qing-Mei ZHU ; Jun XIAO ; Yong-Ming YANG ; Yong-Jian LUO ; Zhong-Cheng MO ; Yi-Qun ZHANG ; Ming LI
Progress in Biochemistry and Biophysics 2024;51(5):1203-1214
ObjectiveTo explore whether miR-375 regulates the malignant characteristics of osteosarcoma (OS) by influencing the expression of MMP13. MethodsPlasmid DNAs and miRNAs were transfected into OS cells and HEK293 cells using Lipofectamine 3000 reagent. Real-time quantitative polymerase chain reaction was performed to measure the expression of miR-375 and MMP13 in OS patients and OS cells. Western blot was performed to analyze the MMP13 protein in the patients with OS and OS cells. The targeting relationship between miR-375 and MMP13 was analyzed by luciferase assay. Migration and invasion were analysed by heal wound and transwell assays, respectively. ResultsmiR-375 expression in OS tissues was lower than that in normal tissues. The expression of MMP13 was upregulated in OS tissues. MMP13 expression was negatively correlated withmiR-375 expression in patients with OS. Migration and invasion were significantly inhibited in OS cells with the miR-375 mimic compared with OS cells with the miRNA control. MMP13 partially reversed the inhibition of migration and invasion induced by miR-375 in the OS cells. ConclusionmiR-375 attenuates migration and invasion by downregulating the expression of MMP13 in OS cells.
10.Study on The Mechanism of Sinomenine Hydrochloride Induced Fibroblast Apoptosis in Rabbits with Adhesive Knee Ankylosis
Xin-Ju HOU ; Hong-Feng LEI ; Yong CHEN ; Fu-Xi LI ; Jing-Ning SUN ; Jia-Ming LIU ; Hong-Mei MA
Progress in Biochemistry and Biophysics 2024;51(4):959-968
ObjectiveThis study aimed to observe the impact of sinomenine hydrochloride on the proliferation of fibroblasts and the mRNA expression of related genes in knee joint adhesion and contracture in rabbits. Additionally, we sought to explore its potential mechanisms in combating knee joint adhesion and contracture. MethodsFibroblasts were cultured in vitro, and experimental groups with varying concentrations of sinomenine hydrochloride were established alongside a control group. Cell proliferation was assessed using the CCK-8 assay. Changes in the mRNA expression of fibroblast-related genes following sinomenine hydrochloride treatment were evaluated using RT-qPCR. The impact of the drug on serum levels of inflammatory cytokines was determined using the ELISA method, and the expression of related proteins was assessed using Western blot. ResultsSinomenine hydrochloride was found to inhibit fibroblast viability, with viability decreasing as the concentration of sinomenine hydrochloride increased. The effects of sinomenine hydrochloride in all experimental groups were highly significant (P<0.05). At the mRNA expression level, compared to the control group, sinomenine hydrochloride led to a significant downregulation of inflammatory cytokines in all groups (P<0.05). Additionally, the expression levels of apoptosis-related proteins significantly increased, while Bcl-2 mRNA expression decreased (P<0.05). The mRNA expression levels of the PI3K/mTOR/AKT3 signaling pathway also decreased (P<0.05). At the protein expression level, in comparison to the control group, the levels of inflammatory cytokines IL-6, IL-8, IL-1β, and TGF-β were significantly downregulated in the middle and high-dose sinomenine hydrochloride groups (P<0.05). The expression levels of cleaved-PARP, cleaved caspase-3/7, and Bax increased and were positively correlated with the dose, while the expression levels of the anti-apoptotic protein Bcl-2 and the PI3K/AKT3/mTOR signaling pathway were negatively correlated with the dose. Sinomenine hydrochloride exhibited a significant inhibitory effect on the viability of rabbit knee joint fibroblasts, which may be associated with the downregulation of inflammatory cytokines IL-6, IL-8, and IL-1β, promotion of apoptosis-related proteins cleaved-PARP, cleaved caspase-3/7, and Bax, suppression of Bcl-2 expression, and inhibition of gene expression in the downstream PI3K/AKT3/mTOR signaling pathway. ConclusionSinomenine hydrochloride can inhibit the inflammatory response of fibroblasts in adhesive knee joints and accelerate fibroblast apoptosis. This mechanism may offer a novel approach to improving and treating knee joint adhesion.

Result Analysis
Print
Save
E-mail