1.Bioinformatics and Animal Experiments Reveal Mechanism of Shouhui Tongbian Capsules in Treating Constipation
Yong LIANG ; Qimeng ZHANG ; Bin GE ; Yang ZHANG ; Yu SHI ; Yue LU ; Hongxi ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):150-157
ObjectiveTo explore the mechanism of Shouhui Tongbian capsules in treating constipation based on the research foundation of its active components combined with network pharmacology and animal experiments. MethodsThe drug components were imported into SwissTargetPrediction to predict the targets of Shouhui Tongbian capsules, and constipation-related targets were collected from disease databases. A protein-protein interaction (PPI) network was constructed for the common targets shared by Shouhui Tongbian capsules and constipation to screen key targets, which was followed by gene ontology (GO) function and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses. A "bioactive component-target-pathway" network was constructed, and the core components of Shouhui Tongbian capsules in treating constipation were screened based on the topological parameters of this network. Molecular docking was employed to predict the binding affinity of core components to key targets. A mouse model of constipation was constructed to screen the key pathways and targets of the drug intervention in constipation. ResultsThe PPI network revealed six key constipation-related targets: protein kinase B (Akt1), B-cell lymphoma-2 (Bcl-2), glycogen synthase kinase-3β (GSK-3β), cyclooxygenase-2 (PTGS2), estrogen receptor 1 (ESR1), and epidermal growth factor receptor (EGFR). The KEGG pathway analysis showed that the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway was the most enriched. The topological parameter analysis of the "bioactive component-target-pathway" network screened out the top 10 core components: auranetin, isosinensetin, naringin, diosmetin, quercetin, apigenin, luteolin, hesperidin, isorhapontigenin, and chrysophanol. Molecular docking results showed that the 10 core components had strong binding affinity with the 6 key targets. Animal experiments showed that after intervention with different doses of Shouhui Tongbian capsules, the time to the first black stool excretion was reduced and the fecal water content and small intestine charcoal propulsion rate of mice were improved. After treatment with Shouhui Tongbian capsules, the colonic mucosal injury and glandular arrangement were alleviated, and the muscle layer thickness was increased. Western blot results showed that Shouhui Tongbian capsules recovered the expression of apoptosis-related molecules mediated by the PI3K/Akt pathway in the colonic tissue of constipated mice. Terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) results showed that the cell apoptosis rate of the colon significantly reduced after intervention with Shouhui Tongbian capsules. ConclusionThe results of network pharmacology and animal experiments confirmed that Shouhui Tongbian capsules can treat constipation through multiple targets and pathways. The capsules can effectively intervene in loperamide-induced constipation in mice by regulating the constipation indicators and reducing cell apoptosis in the colon tissue via activating the PI3K/Akt signaling pathway.
2.Simultaneous TAVI and McKeown for esophageal cancer with severe aortic regurgitation: A case report
Liang CHENG ; Lulu LIU ; Xin XIAO ; Lin LIN ; Mei YANG ; Jingxiu FAN ; Hai YU ; Longqi CHEN ; Yingqiang GUO ; Yong YUAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):277-280
A 71-year-old male presented with esophageal cancer and severe aortic valve regurgitation. Treatment strategies for such patients are controversial. Considering the risks of cardiopulmonary bypass and potential esophageal cancer metastasis, we successfully performed transcatheter aortic valve implantation and minimally invasive three-incision thoracolaparoscopy combined with radical resection of esophageal cancer (McKeown) simultaneously in the elderly patient who did not require neoadjuvant treatment. This dual minimally invasive procedure took 6 hours and the patient recovered smoothly without any surgical complications.
3.Construction of A Nomogram Prognostic Model Based on Pretreatment Inflammatory Indicator for Esophageal Squamous Cell Carcinoma Patients Treated with Radical Radiotherapy
Shenbo FU ; Long JIN ; Jing LIANG ; Junjun GUO ; Yu CHE ; Chenyang LI ; Yong CHEN
Cancer Research on Prevention and Treatment 2025;52(2):142-150
Objective To describe the significance of the pretreatment inflammatory indicators in predicting the prognosis of patients with esophageal squamous cell carcinoma (ESCC) after undergoing radical radiotherapy. Methods The data of 246 ESCC patients who underwent radical radiotherapy were retrospectively collected. Receiver operating characteristic (ROC) curves were drawn to determine the optimal cutoff values for platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), and systemic immune-inflammation index (SII). The Kaplan-Meier method was used for survival analysis. We conducted univariate and multivariate analyses by using the Cox proportional risk regression model. Software R (version 4.2.0) was used to create the nomogram of prognostic factors. Results The results of the ROC curve analysis showed that the optimal cutoff values of PLR, NLR, and SII were 146.06, 2.67, and 493.97, respectively. The overall response rates were 77.6% and 64.5% in the low and high NLR groups, respectively (P<0.05). The results of the Kaplan-Meier survival analysis revealed that the prognosis of patients in the low PLR, NLR, and SII group was better than that of patients in the high PLR, NLR, and SII group (all P<0.05). The results of the multivariate Cox regression analysis showed that gender, treatment modalities, T stage, and NLR were independent factors affecting the overall survival (OS). In addition, T stage and NLR were independent factors affecting the progression-free survival (PFS) (all P<0.05). The nomogram models of OS and PFS prediction were established based on multivariate analysis. The C-index values were 0.703 and 0.668. The calibration curves showed excellent consistency between the predicted and observed OS and PFS. Conclusion The pretreatment values of PLR, NLR, and SII are correlated with the prognosis of patients with ESCC who underwent radical radiotherapy. Moreover, NLR is an independent factor affecting the OS and PFS of ESCC patients. The NLR-based nomogram model has a good predictive ability.
4.Application of Yttrium-90 microsphere selective internal radiation therapy in downstaging and conversion of hepatocellular carcinoma: a case report
Ziwei LIANG ; Tiantian ZHANG ; Yong LIAO ; Xin HUANG ; Bin LIANG ; Zhongbin HANG ; Yan ZHANG ; Lin ZHANG ; Xiaobin FENG ; Li HUO
Chinese Journal of Clinical Medicine 2025;32(1):41-45
This case report describes a 68-year-old male patient diagnosed with primary hepatocellular carcinoma (HCC). After receiving Yttrium-90 microsphere selective internal radiation therapy (90Y-SIRT), the tumor significantly reduced in size, and tumor markers alpha fetoprotein (AFP) and abnormal prothrombin (PIVKA-Ⅱ) decreased. Postoperative pathological results showed minimal residual tumor cells, indicating that 90Y-SIRT has good efficacy and safety in downstaging and conversion of HCC, thereby facilitating subsequent surgical resection.
5.Research Progress on Coinfection and Activation of Merkel Cell Polyomavirus in HIV/AIDS Patients
Xianfeng ZHOU ; Xiaotong QI ; Liang LU ; Yong AI ; Changhua FENG
Cancer Research on Prevention and Treatment 2025;52(4):331-336
Merkel cell polyomavirus (MCV) was named thus because it is the causative agent of Merkel cell carcinoma (MCC), with 80% of MCC cases being MCV-positive. MCV has been classified as a 2A carcinogen. It promotes carcinogenesis by integrating T antigens into the cell genome. The anti-MCV seroprevalence in the general population is as high as 90%. Usually, MCV is latent after infection in immunocompetent patients, and the incidence of MCC in immunosuppressive or defective patients, such as those with organ transplants, chronic lymphocytic leukemia, and HIV infection, is remarkably high. Patients with HIV/AIDS are a typical population with acquired immunodeficiency. At present, the research on patients with HIV/AIDS and MCV infection, activation, and pathogenesis is limited. In this paper, the progress of previous research is reviewed and the relationship between HIV infection and MCV activation is systematically investigated to provide a reference for the prevention and treatment of MCC in key populations, such as patients with HIV/AIDS.
6.Differences in dynamic stability across different height barriers between obese and average men
Wenli ZHANG ; Ziqi ZHAO ; Leichao LIANG ; Yunqi TANG ; Yong WANG
Chinese Journal of Tissue Engineering Research 2025;29(11):2319-2326
BACKGROUND:Obesity negatively affects dynamic balance during walking,and crossing barriers is a more routine functional activity that requires more stability in controlling body posture. OBJECTIVE:To investigate the differences in dynamic stability between obese and average males,and to assess the balance ability of obese males using a relatively more challenging obstacle crossing. METHODS:A total of 24 male youths(12 each in the obese and normal groups)were recruited to complete the tests of walking on level ground and crossing obstacles of different heights(4 cm,11 cm,15 cm)in random order.Kinematic and dynamic data were collected using the Qualisys motion capture system and Kistler force stage.Statistical analysis was performed using two-factor(2 groups * 4 movement types)repeated measures analysis of variance. RESULTS AND CONCLUSION:The obese group had a lower step speed than the normal group(P<0.05),the proportion of the first single support period decreased and the proportion of the second double support period increased when crossing the 11 cm versus 15 cm hurdles(P<0.05).When walking on level ground,the margin of stability in the internal and external directions in the normal group was greater than that of the obese group(P<0.05).When crossing the 4 cm hurdles,the margin of stability in the obese group was less than that in the normal group(P<0.05).When crossing the 11 cm hurdles,there was no significant difference between the two groups in the anterior-posterior direction(P>0.05),while there was a significant difference in the internal-external direction(P<0.05).When crossing the 15 cm hurdles,the margin of stability in the obese group was lower than that in the normal group(P<0.05).Overall,obesity decreases the body's ability to control the body,reduces dynamic stability during crossing the barrier,and increases the risk of falls compared with the general population.In addition,compared with level ground walking,the decrease in the dynamic stability when crossing barriers is more significant in the obese group than the general population.
7.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
8.Effects of anesthesia and surgery on the expression of Alzheimer’s disease-related proteins in the hippocampus of 5×FAD mice and its sex differences
Yinglin ZHANG ; Yong HUANG ; Li ZHANG ; Chao LIANG
Chinese Journal of Clinical Medicine 2025;32(3):493-499
Objective To investigate the impact of anesthesia and surgery on hippocampal expression of Alzheimer’s disease (AD)-associated proteins in 5×FAD transgenic mice and explore potential sex differences. Methods 5×FAD mice were crossbred with C57BL/6J wild-type (WT) mice to generate offspring for genotypic confirmation. Four-month-old 5×FAD mice and littermate (LM) WT controls were allocated into 8 experimental groups (n=8/group): female/male 5×FAD control group, female/male 5×FAD anesthesia/surgery group, female/male LM control group, and female/male LM anesthesia/surgery group. Anesthesia/surgery groups underwent laparotomy under 1.4% isoflurane anesthesia, while control groups received no intervention. Hippocampal tissues were collected 24 hours post-procedure for Western blotting analysis of β-catenin, glycogen synthase kinase 3 beta (GSK3β), and phosphorylated GSK3β (p-GSK3β) levels. Results Female 5×FAD mice demonstrated significant reductions in β-catenin levels and p-GSK3β expression compared to both sex-matched LM controls and male 5×FAD counterparts (P<0.05). No significant differences in these proteins were observed in male 5×FAD mice following anesthesia/surgery. Conclusions These findings reveal sex-specific responses to perioperative stress in AD, suggesting that anesthesia and surgery may affect female AD patients through hippocampal β-catenin/GSK3β pathway modulation.
9.Study on Kinetic and Static Tasks With Different Resistance Coefficients in Post-stroke Rehabilitation Training Based on Functional Near-infrared Spectroscopy
Ling-Di FU ; Jia-Xuan DOU ; Ting-Ting YING ; Li-Yong YIN ; Min TANG ; Zhen-Hu LIANG
Progress in Biochemistry and Biophysics 2025;52(7):1890-1903
ObjectiveFunctional near-infrared spectroscopy (fNIRS), a novel non-invasive technique for monitoring cerebral activity, can be integrated with upper limb rehabilitation robots to facilitate the real-time assessment of neurological rehabilitation outcomes. The rehabilitation robot is designed with 3 training modes: passive, active, and resistance. Among these, the resistance mode has been demonstrated to yield superior rehabilitative outcomes for patients with a certain level of muscle strength. The control modes in the resistance mode can be categorized into dynamic and static control. However, the effects of different control modes in the resistance mode on the motor function of patients with upper limb hemiplegia in stroke remain unclear. Furthermore, the effects of force, an important parameter of different control modes, on the activation of brain regions have rarely been reported. This study investigates the effects of dynamic and static resistance modes under varying resistance levels on cerebral functional alterations during motor rehabilitation in post-stroke patients. MethodsA cohort of 20 stroke patients with upper limb dysfunction was enrolled in the study, completing preparatory adaptive training followed by 3 intensity-level tasks across 2 motor paradigms. The bilateral prefrontal cortices (PFC), bilateral primary motor cortices (M1), bilateral primary somatosensory cortices (S1), and bilateral premotor and supplementary motor cortices (PM) were examined in both the resting and motor training states. The lateralization index (LI), phase locking value (PLV), network metrics were employed to examine cortical activation patterns and topological properties of brain connectivity. ResultsThe data indicated that both dynamic and static modes resulted in significantly greater activation of the contralateral M1 area and the ipsilateral PM area when compared to the resting state. The static patterns demonstrated a more pronounced activation in the contralateral M1 in comparison to the dynamic patterns. The results of brain network analysis revealed significant differences between the dynamic and resting states in the contralateral PFC area and contralateral M1 area (F=4.709, P=0.038), as well as in the contralateral PM area and ipsilateral M1 area (F=4.218, P=0.049). Moreover, the findings indicated a positive correlation between the activation of the M1 region and the increase in force in the dynamic mode, which was reversed in the static mode. ConclusionBoth dynamic and static resistance training modes have been demonstrated to activate the corresponding brain functional regions. Dynamic resistance modes elicit greater oxygen changes and connectivity to the region of interest (ROI) than static resistance modes. Furthermore, the effects of increasing force differ between the two modes. In patients who have suffered a stroke, dynamic modes may have a more pronounced effect on the activation of exercise-related functional brain regions.

Result Analysis
Print
Save
E-mail