1.Guidelines for Antibacterial Treatment of Carbapenem-Resistant Enterobacterales Infections
Se Yoon PARK ; Yae Jee BAEK ; Jung Ho KIM ; Hye SEONG ; Bongyoung KIM ; Yong Chan KIM ; Jin Gu YOON ; Namwoo HEO ; Song Mi MOON ; Young Ah KIM ; Joon Young SONG ; Jun Yong CHOI ; Yoon Soo PARK ; Korean Society for Antimicrobial Therapy
Infection and Chemotherapy 2024;56(3):308-328
This guideline aims to promote the prudent use of antibacterial agents for managing carbapenem-resistant Enterobacterales (CRE) infections in clinical practice in Korea. The general section encompasses recommendations for the management of common CRE infections and diagnostics, whereas each specific section is structured with key questions that are focused on antibacterial agents and disease-specific approaches. This guideline covers both currently available and upcoming antibacterial agents in Korea.
2.Innovative use of a commercial product (Biomagic) for odor reduction, harmful bacteria inhibition, and immune enhancement in pig farm
Abdul Wahab AKRAM ; Hae-Yeon CHO ; Evelyn SABA ; Ga-Yeong LEE ; Seung-Chun PARK ; Sung Dae KIM ; Yong Gu HAN ; Man Hee RHEE
Korean Journal of Veterinary Research 2024;64(4):e32-
The global increase in livestock production has correspondingly intensified farm odors due to harmful bacteria, reduced immunity, and disease progression. In this study, we treated feces with Biomagic-Enzyme complex for 4 months to understand the relationship between farm odor, immunity against common viral diseases, immune cytokines, and changes in the microbiota. A gas meter (MultiRAE) was used to measure ammonia (NH3) and hydrogen sulfide (H2S) while odor intensity and offensiveness were characterized by the non-objective scaling method. A complete blood count was performed and plasma was obtained after blood centrifugation at 3,000 rpm for 20 minutes. The cytokine profile was evaluated using commercial kits. Microbial DNA was extracted and purified from fecal samples to analyze the microbiota. Microbial DNA and viral RNA/DNA were obtained from fecal samples and amplified to determine the expression of transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome (PRRS), and porcine circovirus type 2 (PCV2). Our results indicated that Biomagic reduced odor nuisance by decreasing ammonia levels, resulting in faint and fairly offensive odor intensity. After the enzyme treatment, Escherichia coli populations significantly reduced across all 3 farms. In contrast, beneficial Lactobacillus spp. levels remained stable, indicating the enzyme selectively targeted harmful bacteria while preserving beneficial ones. The beneficial Lachnospiraceae, Spirochaetaceae, and Bacteroidaceae were found to be higher in the third month of treatment. TGEV was not detected, while PRRS and non-pathogenic PCV2 showed a positive infection rate. In conclusion, Biomagic reduced ammonia, prevented viral infection from pig farms, and improved gut-beneficial bacteria and microbiota.
3.Observation of neutrophil extracellular traps in the development of diabetic nephropathy using diabetic murine models
You Hyun JEON ; Se-Hyun OH ; Soo-Jung JUNG ; Eun-Joo OH ; Jeong-Hoon LIM ; Hee-Yeon JUNG ; Ji-Young CHOI ; Sun-Hee PARK ; Chan-Duck KIM ; Yong-Lim KIM ; Chang-Won HONG ; Jang-Hee CHO
Laboratory Animal Research 2024;40(4):424-434
Background:
Diabetic nephropathy (DN) is a progressive complication among patients with diabetes and the most common cause of end-stage kidney disease. Neutrophil extracellular traps (NETs) are known to play a role in kidney disease, thus this study aimed to determine their role in the development of diabetic kidney disease using diabetic murine models.
Results:
Protein and histological analyses revealed that db/db mice and streptozotocin DN models expressed no significant NET-related proteins, myeloperoxidase, citrullinated histone H3 (citH3), neutrophil elastase, and lymphocyte antigen 6 complex locus G6D (Ly6G). However, the inflamed individuals in the DN model showed that citH3 and Ly6G were highly deposited in the renal system based on immunohistochemistry images. In vitro, NET treatment did not induce apoptosis in glomerular endothelial and renal tubular epithelial cells. NET inhibition by DNase administration demonstrated no significant changes in cell apoptosis.
Conclusions
NET-related proteins were only expressed in the DN model with tubulointerstitial inflammation. Our study revealed that NETs are only induced in mice with hyperglycemia-induced inflammation.
4.Exercise improves muscle mitochondrial dysfunction-associated lipid profile under circadian rhythm disturbance
Yu GU ; Dong-Hun SEONG ; Wenduo LIU ; Zilin WANG ; Yong Whi JEONG ; Jae-Cheol KIM ; Dae Ryong KANG ; Rose Ji Eun LEE ; Jin-Ho KOH ; Sang Hyun KIM
The Korean Journal of Physiology and Pharmacology 2024;28(6):515-526
We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.
5.Innovative use of a commercial product (Biomagic) for odor reduction, harmful bacteria inhibition, and immune enhancement in pig farm
Abdul Wahab AKRAM ; Hae-Yeon CHO ; Evelyn SABA ; Ga-Yeong LEE ; Seung-Chun PARK ; Sung Dae KIM ; Yong Gu HAN ; Man Hee RHEE
Korean Journal of Veterinary Research 2024;64(4):e32-
The global increase in livestock production has correspondingly intensified farm odors due to harmful bacteria, reduced immunity, and disease progression. In this study, we treated feces with Biomagic-Enzyme complex for 4 months to understand the relationship between farm odor, immunity against common viral diseases, immune cytokines, and changes in the microbiota. A gas meter (MultiRAE) was used to measure ammonia (NH3) and hydrogen sulfide (H2S) while odor intensity and offensiveness were characterized by the non-objective scaling method. A complete blood count was performed and plasma was obtained after blood centrifugation at 3,000 rpm for 20 minutes. The cytokine profile was evaluated using commercial kits. Microbial DNA was extracted and purified from fecal samples to analyze the microbiota. Microbial DNA and viral RNA/DNA were obtained from fecal samples and amplified to determine the expression of transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome (PRRS), and porcine circovirus type 2 (PCV2). Our results indicated that Biomagic reduced odor nuisance by decreasing ammonia levels, resulting in faint and fairly offensive odor intensity. After the enzyme treatment, Escherichia coli populations significantly reduced across all 3 farms. In contrast, beneficial Lactobacillus spp. levels remained stable, indicating the enzyme selectively targeted harmful bacteria while preserving beneficial ones. The beneficial Lachnospiraceae, Spirochaetaceae, and Bacteroidaceae were found to be higher in the third month of treatment. TGEV was not detected, while PRRS and non-pathogenic PCV2 showed a positive infection rate. In conclusion, Biomagic reduced ammonia, prevented viral infection from pig farms, and improved gut-beneficial bacteria and microbiota.
6.Observation of neutrophil extracellular traps in the development of diabetic nephropathy using diabetic murine models
You Hyun JEON ; Se-Hyun OH ; Soo-Jung JUNG ; Eun-Joo OH ; Jeong-Hoon LIM ; Hee-Yeon JUNG ; Ji-Young CHOI ; Sun-Hee PARK ; Chan-Duck KIM ; Yong-Lim KIM ; Chang-Won HONG ; Jang-Hee CHO
Laboratory Animal Research 2024;40(4):424-434
Background:
Diabetic nephropathy (DN) is a progressive complication among patients with diabetes and the most common cause of end-stage kidney disease. Neutrophil extracellular traps (NETs) are known to play a role in kidney disease, thus this study aimed to determine their role in the development of diabetic kidney disease using diabetic murine models.
Results:
Protein and histological analyses revealed that db/db mice and streptozotocin DN models expressed no significant NET-related proteins, myeloperoxidase, citrullinated histone H3 (citH3), neutrophil elastase, and lymphocyte antigen 6 complex locus G6D (Ly6G). However, the inflamed individuals in the DN model showed that citH3 and Ly6G were highly deposited in the renal system based on immunohistochemistry images. In vitro, NET treatment did not induce apoptosis in glomerular endothelial and renal tubular epithelial cells. NET inhibition by DNase administration demonstrated no significant changes in cell apoptosis.
Conclusions
NET-related proteins were only expressed in the DN model with tubulointerstitial inflammation. Our study revealed that NETs are only induced in mice with hyperglycemia-induced inflammation.
7.Exercise improves muscle mitochondrial dysfunction-associated lipid profile under circadian rhythm disturbance
Yu GU ; Dong-Hun SEONG ; Wenduo LIU ; Zilin WANG ; Yong Whi JEONG ; Jae-Cheol KIM ; Dae Ryong KANG ; Rose Ji Eun LEE ; Jin-Ho KOH ; Sang Hyun KIM
The Korean Journal of Physiology and Pharmacology 2024;28(6):515-526
We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.
8.Innovative use of a commercial product (Biomagic) for odor reduction, harmful bacteria inhibition, and immune enhancement in pig farm
Abdul Wahab AKRAM ; Hae-Yeon CHO ; Evelyn SABA ; Ga-Yeong LEE ; Seung-Chun PARK ; Sung Dae KIM ; Yong Gu HAN ; Man Hee RHEE
Korean Journal of Veterinary Research 2024;64(4):e32-
The global increase in livestock production has correspondingly intensified farm odors due to harmful bacteria, reduced immunity, and disease progression. In this study, we treated feces with Biomagic-Enzyme complex for 4 months to understand the relationship between farm odor, immunity against common viral diseases, immune cytokines, and changes in the microbiota. A gas meter (MultiRAE) was used to measure ammonia (NH3) and hydrogen sulfide (H2S) while odor intensity and offensiveness were characterized by the non-objective scaling method. A complete blood count was performed and plasma was obtained after blood centrifugation at 3,000 rpm for 20 minutes. The cytokine profile was evaluated using commercial kits. Microbial DNA was extracted and purified from fecal samples to analyze the microbiota. Microbial DNA and viral RNA/DNA were obtained from fecal samples and amplified to determine the expression of transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome (PRRS), and porcine circovirus type 2 (PCV2). Our results indicated that Biomagic reduced odor nuisance by decreasing ammonia levels, resulting in faint and fairly offensive odor intensity. After the enzyme treatment, Escherichia coli populations significantly reduced across all 3 farms. In contrast, beneficial Lactobacillus spp. levels remained stable, indicating the enzyme selectively targeted harmful bacteria while preserving beneficial ones. The beneficial Lachnospiraceae, Spirochaetaceae, and Bacteroidaceae were found to be higher in the third month of treatment. TGEV was not detected, while PRRS and non-pathogenic PCV2 showed a positive infection rate. In conclusion, Biomagic reduced ammonia, prevented viral infection from pig farms, and improved gut-beneficial bacteria and microbiota.
9.Observation of neutrophil extracellular traps in the development of diabetic nephropathy using diabetic murine models
You Hyun JEON ; Se-Hyun OH ; Soo-Jung JUNG ; Eun-Joo OH ; Jeong-Hoon LIM ; Hee-Yeon JUNG ; Ji-Young CHOI ; Sun-Hee PARK ; Chan-Duck KIM ; Yong-Lim KIM ; Chang-Won HONG ; Jang-Hee CHO
Laboratory Animal Research 2024;40(4):424-434
Background:
Diabetic nephropathy (DN) is a progressive complication among patients with diabetes and the most common cause of end-stage kidney disease. Neutrophil extracellular traps (NETs) are known to play a role in kidney disease, thus this study aimed to determine their role in the development of diabetic kidney disease using diabetic murine models.
Results:
Protein and histological analyses revealed that db/db mice and streptozotocin DN models expressed no significant NET-related proteins, myeloperoxidase, citrullinated histone H3 (citH3), neutrophil elastase, and lymphocyte antigen 6 complex locus G6D (Ly6G). However, the inflamed individuals in the DN model showed that citH3 and Ly6G were highly deposited in the renal system based on immunohistochemistry images. In vitro, NET treatment did not induce apoptosis in glomerular endothelial and renal tubular epithelial cells. NET inhibition by DNase administration demonstrated no significant changes in cell apoptosis.
Conclusions
NET-related proteins were only expressed in the DN model with tubulointerstitial inflammation. Our study revealed that NETs are only induced in mice with hyperglycemia-induced inflammation.
10.Exercise improves muscle mitochondrial dysfunction-associated lipid profile under circadian rhythm disturbance
Yu GU ; Dong-Hun SEONG ; Wenduo LIU ; Zilin WANG ; Yong Whi JEONG ; Jae-Cheol KIM ; Dae Ryong KANG ; Rose Ji Eun LEE ; Jin-Ho KOH ; Sang Hyun KIM
The Korean Journal of Physiology and Pharmacology 2024;28(6):515-526
We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.

Result Analysis
Print
Save
E-mail