1.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
2.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
3.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
4.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
5.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
6. Mechanism of action of formononetin in alleviating allergic asthma through DRP1-NLRP3 signaling pathway
Mu CHEN ; Qiao-Yun BAI ; Yi-Lan SONG ; Jiao CHEN ; Yong-De JIN ; Guang-Hai YAN ; Jiao CHEN ; Yong-De JIN ; Qiao-Yun BAI ; Yi-Lan SONG ; Guang-Hai YAN
Chinese Pharmacological Bulletin 2024;40(3):529-536
Aim To investigate the mechanism by which formononetin (FN) inhibits mitochondrial dynamic-related protein 1 (DRP1) -NLRP3 axis via intervening the generation of ROS to reduce allergic airway inflammation. Methods In order to establish allergic asthma mouse model, 50 BALB/c mice aged 8 weeks were divided into the control group, model group, FN treatment group and dexamethasone group after ovalbumin (OVA) induction. Airway inflammation and collagen deposition were detected by HampE and Masson staining. Th2 cytokines and superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and IgE levels in bronchoalveolar lavage fluid (BALF) were measured by ELISA, ROS in BEAS-2B cells was assessed by DCFH-DA staining, DRP1 expression in lung tissue and BEAS-2B cells was detected by immunohistochemistry and immunofluorescence, and the DRP1-NLRP3 pathway was analyzed by immunoblotting. Results FN treatment could effectively ameliorate the symptoms of asthmatic mouse model, including reducing eosinophil accumulation, airway collagen deposition, decreasing Th2 cytokine and IgE levels, reducing ROS and MDA production, increasing SOD and CAT activities, and regulating DRP1-NLRP3 pathway-related protein expression, thereby relieving inflammation. Conclusion FN ameliorates airway inflammation in asthma by regulating DRP1-NLRP3 pathway.
7.Bioequivalence study of olmesartan medoxomil tablet in Chinese healthy subjects
Na SHAN ; Da-Hai JIANG ; Lin-Lin MIAO ; Zhen-Li REN ; Peng-Bo JIN ; Pei-Qi HAO ; Li AN ; Hong ZHU ; Yong XIN ; Guang-De YANG ; Feng LIU
The Chinese Journal of Clinical Pharmacology 2024;40(20):3033-3037
Objective To study the bioequivalence of test and reference olmesartan tablet in Chinese healthy subjects after single dose under fasting and fed conditions.Methods A single-center,random,open,single-dose,two-preparations,double-period,crossover study was adopted.A total of 48 healthy adult male and female subjects(24 cases of fasting test and 24 cases of fed test)were included in the random crossover administration.Single oral dose 20 mg of test and reference were taken under fasting and postprandial conditions,respectively.Plasma concentration of olmesartan in plasma were determined by liquid chromatography tandem mass spectrometry.The main pharmacokinetic parameters were calculated by Phoenix WinNonlin 8.0 software.Results The main pharmacokinetic parameters of the test and reference preparations of olmesartan tablets in the fasting group were as follows:Cmax were(653.06±133.53)and(617.37±151.16)ng·mL-1,AUC0-t were(4 201.18±1 035.21)and(4 087.38±889.99)ng·mL-1·h,AUC0-∞ were(4 254.30±1 058.90)and(4 135.69±905.29)ng·mL-1·h.The main pharmacokinetic parameters of the test and reference preparations of olmesartan tablets in the postprandial group were as follows:Cmax were(574.78±177.05)and(579.98±107.74)ng·mL-1,AUC0-t were(3 288.37±866.06)and(3 181.51±801.06)ng·mL-1·h,AUC0-∞ were(3 326.11±874.26)and(3 242.01±823.09)ng·mL-1·h.Under fasting and postprandial conditions,the 90%confidence intervals of the main pharmacokinetic parameters of the test and reference preparations are both 80.00%-125.00%.Conclusion Under fasting and postprandial conditions,a single oral dose of test and reference preparations olmesartan tablets in Chinese healthy adult volunteers showed bioequivalence.
8.Localization and anatomical measurement of lateral compression Ⅱscrew guide needle insertion point for pelvic fracture
Yong-Zheng CHEN ; Zhen-Hua HU ; Shao-Juan LI ; Xia-Cun LIANG ; Li-Kang HOU ; Shu-Liang ZHU ; Xin-Ying BAI ; Jin-Jian HE ; De-Meng YANG ; Zhi-Guo CHEN
Acta Anatomica Sinica 2024;55(6):728-733
Objective To measure the distance between the lateral compression Ⅱ(LC-Ⅱ)screw guide needle and the surrounding important structures around the anterior inferior iliac spine in pelvic fractures and to locate the needle point,so as to provide anatomical reference for clinical nail placement.Methods Totally 40 adult gross specimens of embalming were implanted with LC-Ⅱ screw guide needle under the surveillance of C-arm machine,and the specimens were dissected.The shortest distance between the insertion point and the lateral femoral cutaneous nerve,femoral nerve,femoral artery,femoral vein,anterior superior iliac spine and inguinal ligament was measured.The triangle was constructed between the insertion point,anterior superior iliac spine and inguinal ligament,and the exact location of the entry point was calculated.Results The average distance between the insertion point of the male needle and the femoral vein was(50.67±7.29)mm>the anterior superior iliac spine(43.83±7.58)mm>the femoral artery(38.35±6.63)mm>the femoral nerve(31.17±1.67)mm=the inguinal ligament(28.69±6.59)mm>the lateral femoral cutaneous nerve(7.98±3.81)mm.The mean distance between the insertion point of the female needle and the anterior superior iliac spine was(45.28±7.07)mm=femoral vein(43.72±6.89)mm>femoral artery(33.76±6.33)mm>femoral nerve(25.66±6.46)mm=inguinal ligament(23.22±5.00)mm>lateral femoral cutaneous nerve(8.97±4.76)mm.The projection distance of the entry point was 31.77 mm for men and 38.41 mm for women.The Angle b was 42.81°for men and 31.71° for women.Conclusion The lateral femoral cutaneous nerve is most vulnerable to injury when LC-Ⅱ screw is inserted,and the risk of injury has nothing to do with sex.The insertion point positioning method a and b made LC-Ⅱ screw placement quickly,safely and accurately,and reduced fluoroscopy time and frequency.
9. JTE-013 mediates RhoA/ROCKl/Drpl signaling axis regulating mitochondrial damage and apoptosis to alleviate allergic rhinitis
Jiao CHEN ; Long-Zhu DAI ; Mu CHEN ; Yi-Lan SONG ; Guang-Hai YAN ; Chong-Yang WANG ; Yong-De JIN ; Jiao CHEN ; Mu CHEN ; Yong-De JIN ; Long-Zhu DAI ; Yi-Lan SONG ; Guang-Hai YAN ; Chong-Yang WANG
Chinese Pharmacological Bulletin 2023;39(9):1638-1647
Aim To investigate the protective effect and mechanism of JTE-013 on allergic rhinitis (AR) by regulating mitochondrial injury and apoptosis through RhoA/ROCKl/Drpl pathway. Methods AR model was established by ovalbumin (OVA) in mice. Nasal tissue sections were then stained with HE, TUNEL and DHE. Western blot assay. In vitro, human nasal epithelial cells (HNEpCs) were stimulated with human recombinant interleukin-13 (IL-13), and the effects of JTE-013 and Y27632-related protein expression were detected by Western blot. Immunofluorescence was used to observe the effects of JTE-013 and Y 27632 on total ROS, mitochondrial membrane potential and mitochondrial ROS generation, Drpl translocation and Cyt-c expression in cells. Results JTE-013 reduced the frequency of nose rubbing and sneezing, reduced nasal mucosal thickening and decreased eosinophil infiltration in AR mice. TUNEL and DHE staining results suggested that JTE-013 could inhibit apoptosis and reduce ROS expression in mouse nasal epithelial cells. Western blot showed that both JTE-013 and Y 27632 could significantly reduce RhoA, ROCK1, Drpl and p-Drpl(616), inhibit the expression of apoptotic proteins Bax, cleaved-caspase-3, Cyt-c, cleavedcaspase-9 and up-regulate the expression of p-Drpl (637) and Bcl-2. Immunofluorescence showed that inhibitors of JTE-013 or ROCK1 almost blocked IL-13mediated increase in ROS and mtROS production, inhibited decrease in mitochondrial membrane potential, and blocked Cyt-c expression and Drpl translocation in nasal mucosal epithelial cells. Conclusion JTE-013 can regulate the morphology and function of mitochondria by inhibiting RhoA/ROCKl/Drpl signaling axis, thereby alleviating nasal epithelial cell inflammation in mice with allergic rhinitis.
10. Panax notoginseng saponin Rl attenuates allergic rhinitis through AMPK/DRP1 mediated mitochondrial fission
Ya-Lin ZHANG ; Chong-Yang WANG ; Si-Qi LIU ; Hai-Nan JIN ; Yi-Lan SONG ; Guang-Hai YAN ; Yong-De JIN ; Ya-Lin ZHANG ; Si-Qi LIU ; Hai-Nan JIN ; Yong-De JIN ; Chong-Yang WANG ; Yi-Lan SONG ; Guang-Hai YAN
Chinese Pharmacological Bulletin 2023;39(3):512-519
Aim To investigate whether notoginsenoside Rl (PNS-R1) alleviates allergic rhinitis (AR) through AMP-activated protein kinase (AMPK)/mitochondrial fission critical protein (DRP1) -mediated mitochondrial fission. Methods Different doses of PNSRl were used to treat ovalbumin (OVA) -induced AR model mice,and the inhibitory effect of PNS-R1 on AR was investigated by observing allergic symptoms such as nasal rubbing and sneezing, as well as HE staining of nasal tissues. Serum IgE levels and nasal lavage fluid (NLF) inflammatory cytokine levels were detected by enzyme-linked immunosorbent assay (ELISA) and apoptosis-related proteins were detected by Western blot. In vitro human nasal epithelial cells (HNEpC) were stimulated with IL-13 to observe apoptosis, mitochondrial membrane potential, cellular ROS and mitochondrial ROS production, as well as the expression levels of AMPK/DRP1, expression levels of the TXNIP/NLRP3 inflammasomes and the translocation of DRP1. Results PNS-R1 attenuated allergic symptoms in AR mice, HE staining reduced inflammatory cells and reduced the levels of OVA-specific IgE in serum, and the levels of IL-4, IL-6, and IL-8 in NLF. PNS-R1 attenuated the apoptosis and ROS production of nasal epithelial cells in AR. In vitro PNS-R1 could up-regulate mitochondrial membrane potential after IL-13 stimulation, reduce ROS and mtROS production, the proportion of apoptotic positive cells, and reduce cleaved caspase-3, Bax, and up-regulate Bcl-2 expression, down-regulate DRP1 phosphorylation (Ser 616) and DRP1 translocation at the mitochondrial membrane in an AMPK-dependent manner, reducing TXNIP/NLRP3 expression. Conclusions PNS-R1 can protect mitochondrial integrity by inhibiting the AMPK/DRP1 signaling axis and its subsequent TXNIP/NLRP3 signaling axis,thereby alleviating rhinitis in AR mice.

Result Analysis
Print
Save
E-mail