1.Interplay Between Interferon Stimulatory Pathways and Organellar Dynamics
Jin-Ru LI ; Yu DUAN ; Xin-Gui DAI ; Yong-Ming YAO
Progress in Biochemistry and Biophysics 2025;52(7):1708-1727
Interferon stimulating factor STING, a transmembrane protein residing in the endoplasmic reticulum, is extensively involved in the sensing and transduction of intracellular signals and serves as a crucial component of the innate immune system. STING is capable of directly or indirectly responding to abnormal DNA originating from diverse sources within the cytoplasm, thereby fulfilling its classical antiviral and antitumor functions. Structurally, STING is composed of 4 transmembrane helices, a cytoplasmic ligand binding domain (LBD), and a C terminal tail structure (CTT). The transmembrane domain (TM), which is formed by the transmembrane helical structures, anchors STING to the endoplasmic reticulum, while the LBD is in charge of binding to cyclic dinucleotides (CDNs). The classical second messenger, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), represents a key upstream molecule for STING activation. Once cGAMP binds to LBD, STING experiences conformational alterations, which subsequently lead to the recruitment of Tank-binding kinase 1 (TBK1) via the CTT domain. This, in turn, mediates interferon secretion and promotes the activation and migration of dendritic cells, T cells, and natural killer cells. Additionally, STING is able to activate nuclear factor-κB (NF-κB), thereby initiating the synthesis and release of inflammatory factors and augmenting the body’s immune response. In recent years, an increasing number of studies have disclosed the non-classical functions of STING. It has been found that STING plays a significant role in organelle regulation. STING is not only implicated in the quality control systems of organelles such as mitochondria and endoplasmic reticulum but also modulates the functions of these organelles. For instance, STING can influence key aspects of organelle quality control, including mitochondrial fission and fusion, mitophagy, and endoplasmic reticulum stress. This regulatory effect is not unidirectional; rather, it is subject to organelle feedback regulation, thereby forming a complex interaction network. STING also exerts a monitoring function on the nucleus and ribosomes, which further enhances the role of the cGAS-STING pathway in infection-related immunity. The interaction mechanism between STING and organelles is highly intricate, which, within a certain range, enhances the cells’ capacity to respond to external stimuli and survival pressure. However, once the balance of this interaction is disrupted, it may result in the occurrence and development of inflammatory diseases, such as aseptic inflammation and autoimmune diseases. Excessive activation or malfunction of STING may trigger an over-exuberant inflammatory response, which subsequently leads to tissue damage and pathological states. This review recapitulates the recent interactions between STING and diverse organelles, encompassing its multifarious functions in antiviral, antitumor, organelle regulation, and immune regulation. These investigations not only deepen the comprehension of molecular mechanisms underlying STING but also offer novel concepts for the exploration of human disease pathogenesis and the development of potential treatment strategies. In the future, with further probing into STING function and its regulatory mechanisms, it is anticipated to pioneer new approaches for the treatment of complex diseases such as inflammatory diseases and tumors.
2.tRF Prospect: tRNA-derived Fragment Target Prediction Based on Neural Network Learning
Dai-Xi REN ; Jian-Yong YI ; Yong-Zhen MO ; Mei YANG ; Wei XIONG ; Zhao-Yang ZENG ; Lei SHI
Progress in Biochemistry and Biophysics 2025;52(9):2428-2438
ObjectiveTransfer RNA-derived fragments (tRFs) are a recently characterized and rapidly expanding class of small non-coding RNAs, typically ranging from 13 to 50 nucleotides in length. They are derived from mature or precursor tRNA molecules through specific cleavage events and have been implicated in a wide range of cellular processes. Increasing evidence indicates that tRFs play important regulatory roles in gene expression, primarily by interacting with target messenger RNAs (mRNAs) to induce transcript degradation, in a manner partially analogous to microRNAs (miRNAs). However, despite their emerging biological relevance and potential roles in disease mechanisms, there remains a significant lack of computational tools capable of systematically predicting the interaction landscape between tRFs and their target mRNAs. Existing databases often rely on limited interaction features and lack the flexibility to accommodate novel or user-defined tRF sequences. The primary goal of this study was to develop a machine learning based prediction algorithm that enables high-throughput, accurate identification of tRF:mRNA binding events, thereby facilitating the functional analysis of tRF regulatory networks. MethodsWe began by assembling a manually curated dataset of 38 687 experimentally verified tRF:mRNA interaction pairs and extracting seven biologically informed features for each pair: (1) AU content of the binding site, (2) site pairing status, (3) binding region location, (4) number of binding sites per mRNA, (5) length of the longest consecutive complementary stretch, (6) total binding region length, and (7) seed sequence complementarity. Using this dataset and feature set, we trained 4 distinct machine learning classifiers—logistic regression, random forest, decision tree, and a multilayer perceptron (MLP)—to compare their ability to discriminate true interactions from non-interactions. Each model’s performance was evaluated using overall accuracy, receiver operating characteristic (ROC) curves, and the corresponding area under the ROC curve (AUC). The MLP consistently achieved the highest AUC among the four, and was therefore selected as the backbone of our prediction framework, which we named tRF Prospect. For biological validation, we retrieved 3 high-throughput RNA-seq datasets from the gene expression omnibus (GEO) in which individual tRFs were overexpressed: AS-tDR-007333 (GSE184690), tRF-3004b (GSE197091), and tRF-20-S998LO9D (GSE208381). Differential expression analysis of each dataset identified genes downregulated upon tRF overexpression, which we designated as putative targets. We then compared the predictions generated by tRF Prospect against those from three established tools—tRFTar, tRForest, and tRFTarget—by quantifying the number of predicted targets for each tRF and assessing concordance with the experimentally derived gene sets. ResultsThe proposed algorithm achieved high predictive accuracy, with an AUC of 0.934. Functional validation was conducted using transcriptome-wide RNA-seq datasets from cells overexpressing specific tRFs, confirming the model’s ability to accurately predict biologically relevant downregulation of mRNA targets. When benchmarked against established tools such as tRFTar, tRForest, and tRFTarget, tRF Prospect consistently demonstrated superior performance, both in terms of predictive precision and sensitivity, as well as in identifying a higher number of true-positive interactions. Moreover, unlike static databases that are limited to precomputed results, tRF Prospect supports real-time prediction for any user-defined tRF sequence, enhancing its applicability in exploratory and hypothesis-driven research. ConclusionThis study introduces tRF Prospect as a powerful and flexible computational tool for investigating tRF:mRNA interactions. By leveraging the predictive strength of deep learning and incorporating a broad spectrum of interaction-relevant features, it addresses key limitations of existing platforms. Specifically, tRF Prospect: (1) expands the range of detectable tRF and target types; (2) improves prediction accuracy through multilayer perceptron model; and (3) allows for dynamic, user-driven analysis beyond database constraints. Although the current version emphasizes miRNA-like repression mechanisms and faces challenges in accurately capturing 5'UTR-associated binding events, it nonetheless provides a critical foundation for future studies aiming to unravel the complex roles of tRFs in gene regulation, cellular function, and disease pathogenesis.
3. Establishment and biological characterization of drug-resistant cells and identification of multidrug resistance in small-cell lung cancer
Yong-Qing HAN ; Zheng-Yuan WANG ; Xiu-Fen DAI ; Zi-Ran WANG ; Jing LI ; Xin QI ; Jing LI
Chinese Pharmacological Bulletin 2024;40(2):279-284
Aim To establish NCI-H446/EP for small cell lung cancer resistant cells resistant to cisplatin and etoposide, and to evaluate their biological characteristics and multidrug resistance. Methods Nude mice were subcutaneously inoculated with NCI-H446 cells of SCLC to construct an in vivo model of xenograft tumor, and were given first-line EP regimen treatment for SCLC, inducing drug resistance in vivo, and stripping tumor tissue in vitro culture to obtain drug-resistant cells. The resistance coefficient, cell doubling time, cell cycle distribution, expression of multidrug resistance gene (MDR1), and drug resistance-related protein were detected in vitro, and the drug resistance to cisplatin and etoposide in vivo were verified. Results Mice with NCI-H446 tumors acquired resistance after eight weeks' EP regimen treatment, and the drug-resistant cell line NCI-H446/EP was obtained by isolation and culture in vitro. The resistance factors of this cell line to cisplatin, etoposide, SN38 and doxorubicin were 12.01, 18.36, 65.4 and 10.12, respectively. Compared with parental cells, the proportion of NCIH446/EP cells in Q
4.Clinical effectiveness of endoscopic thyroidectomy via transoral submental approach vs.open surgery:a comparative study
Huilin LUO ; Mengqiao DAI ; Cao LIU ; Zhener LI ; Yang XIE ; Yong YING ; Xiangtai ZENG
The Journal of Practical Medicine 2024;40(3):384-388
Objective To compare endoscopic thyroidectomy via transoral submental approach with open surgery for treating thyroid tumors in terms of the clinical effectiveness.Methods We retrospectively reviewed and analyzed the clinical data and follow-up records of 154 patients in the study,who were hospitalized for thyroidectomy in our hospital from January 2021 to June 2022.Among them,74 cases undergoing endoscopic thyroidectomy via transoral submental approach were assigned to the endoscopic group and 80 cases undergoing traditional open thyroid surgery to the open surgery group.Results All operations were completed successfully and safely in both groups,with no intermediate openings in the endoscopic group.Compared with the open surgery group,the endoscopic group had significantly fewer intraoperative blood losses[(19.46±10.24)mL vs.(32.05±15.87)mL],significantly less incision length[(1.95±0.30)cm vs.(7.05±0.60)cm],significant shorter operative time[(136.66±22.44)min vs.(82.75±15.20)min],and significantly less total postoperative drainage[(111.35±38.92)mL vs.(95.45±36.73)mL](all P<0.05).Endoscopic patients had superior postoperative pain and cosmetic satisfaction compared to open patients,and the difference was statistically significant(P<0.05).The two groups had no significant differences in the number of lymph node dissections,parathyroid hormone,and postoperative morbidity between the two groups(P>0.05).Conclusion The endoscopic thyroidectomy via transoral submental approach can achieve the same clinical effectiveness as the traditional open surgery.However,it is advantageous in reducing intra-operative blood loss,relieving post-operative pain,and achieving a better cosmetic effects of neck incision,thus deserving clinical promotion and application.
5.PDHA1 promotes proliferation,invasion and metastasis of triple-nega-tive breast cancer cells
Jiaqi LI ; Yong SUN ; Le LI ; Yuan LI ; Jun FAN ; Zhihua KONG ; Xiaoyun MAO ; Yong DAI
Chinese Journal of Pathophysiology 2024;40(2):244-254
AIM:One of the important characteristics of the occurrence and development of triple-negative breast cancer(TNBC)is dysregulated cell metabolism.The aim of this study is to investigate the mechanism of pyruvate dehydrogenase E1 subunit alpha 1(PDHA1),a key enzyme component in aerobic glycolysis,affecting the proliferation,metastasis and invasion of TNBC.METHODS:(1)The expression levels of PDHA1 in breast cancer tissues and adja-cent tissues were analyzed by UALCAN database,KM-plotter database,Gene MANIA database and TCGA database.The expression of PDHA1 was compared according to tumor pathological stage,subtype classification and breast cancer bio-markers.The function of PDHA1 in TNBC was explored by gene enrichment analysis.(2)Immunohistochemistry assays were used to detect the expression of PDHA1 in human TNBC tissue and adjacent tissue samples.(3)Stable PDHA1 knockout and PDHA1 rescue TNBC MDA-MB-231 cells were constructed.The proliferation of MDA-MB-231 cells was de-tected by colony formation assay and cell counting assay.The regulatory effect of PDHA1 on the invasion and migration of MDA-MB-231 cells was detected by in vitro scratch assay and Transwell migration assay.RESULTS:Database analysis showed that the group with high PDHA1 expression in breast cancer had shorter survival and worse prognosis.In clinical specimens,the expression of PDHA1 in cancer tissues was higher than that in adjacent normal tissues.Knockout of PDHA1 inhibited the proliferation,metastasis,invasion and epithelial-mesenchymal transition of MDA-MB-231 cells.CONCLUSION:PDHA1 is overexpressed in TNBC,and it promotes cell proliferation and facilitates TNBC metastasis through the epithelial-mesenchymal transition pathway.
8.Quality evaluation for Beidougen Formula Granules
Gui-Yun CAO ; Xue-Song ZHUANG ; Bo NING ; Yong-Qiang LIN ; Dai-Jie WANG ; Wei-Liang CUI ; Hong-Chao LIU ; Xiao-Di DONG ; Meng-Meng HUANG ; Zhao-Qing MENG
Chinese Traditional Patent Medicine 2024;46(3):717-723
AIM To evaluate the quality of Beidougen Formula Granules.METHODS Fifteen batches of standard decoctions and three batches of formula granules were prepared,after which paste rate and contents,transfer rates of magnoflorine,daurisoline,dauricine were determined.HPLC specific chromatograms were established,and cluster analysis was adopted in chemical pattern recognition.RESULTS For three batches of formula granules,the paste rates were 15.1%-16.6%,the contents of magnoflorine,daurisoline,dauricine were 18.93-19.39,9.42-9.60,6.79-6.85 mg/g with the transfer rates of 34.42%-35.25%,43.81%-44.65%,27.27%-27.51%from decoction pieces to formula granules,respectively,and there were seven characteristic peaks in the specific chromatograms with the similarities of more than 0.95,which demonstrated good consistence with those of standard decoctions and accorded with related limit requirements.Fifteen batches of standard decoctions were clustered into two types,and the medicinal materials produced from Jilin,Hebei,Shangdong could be used for the preparation of formula granules.CONCLUSION This reasonable and reliable method can provide references for the quality control and clinical application of Beidougen Formula Granules.
9.Early result of postoperative echocardiographic evaluation in 28 patients underwent left ventricular assist device implantation
Yong LIN ; Guican ZHANG ; Xiaofu DAI ; Qianzhen LI ; Guanhua FANG ; Zhihuang QIU ; Heng LU ; Yi DONG ; Liangwan CHEN
Chinese Journal of Thoracic and Cardiovascular Surgery 2024;40(1):7-11
Objective:To extract the early result of postoperative echocardiographic evaluation in patients underwent left ventricular assist device (LVAD) implantation, and to assess the efficacy of surgical treatment for end-staged heart failure.Methods:Between June 2019 and May 2023, the patients underwent left ventricular assist device implantation were enrolled in this study. Demographic baseline characteristics and perioperative echocardiographic parameters were collected and analyzed.Results:A total of 28 patients were included in the study. After LVAD implantation, the heart sizes of the patients obviously reduced and the left heart contractibility function improved. The right ventricular contractibility remained stable. The proportion of the patients with moderate to severe mitral regurgitation was significantly reduced, but patients with mild to moderate aortic insufficiency increased. No serious complications such as death, pericardial tamponade and thrombosis events were observed during the follow-up period.Conclusion:LVAD implantation improved the left cardiac function, while the right cardiac function remained stable. However, it should be paid attention that the aortic valve function was impaired after the surgery. Generally, the early results of LVAD implantation for the treatment of end-stage heart failure were satisfactory.
10.CRISPR genotyping and regional distribution characteristics of Yersinia pestis in natural plague focus of Tibet Autonomous Region
Xiaoyan YANG ; Sheng LI ; Juan JIN ; Jian HE ; Youquan XIN ; Jixiang BAI ; Hailian WU ; Yong JIN ; Xiaolu ZHANG ; Ruixia DAI
Chinese Journal of Endemiology 2024;43(2):98-103
Objective:To study the clustered regularly interspaced short palindromic repeats (CRISPR) genotype of Yersinia pestis and its regional distribution characteristics in natural plague focus of Tibet Autonomous Region. Methods:A total of 125 representative Yersinia pestis strains isolated from natural plague focus in Tibet Autonomous Region at different times, regions, hosts and vectors were selected as experimental strains, and the phenol chloroform mixed extraction method was used to extract Yersinia pestis DNA. Three pairs of CRISPR primers (for YPa, YPb, YPc locus) were used to amplify the DNA of the experimental strains, and the CRISPR genotype of Yersinia pestis was determined by sequencing. Results:All 125 strains of Yersinia pestis had three CRISPR locus: YPa, YPb, and YPc. A total of 18 spacer were found, including 8 in YPa loci, 6 in YPb loci, and 4 in YPc loci. Two new types of spacers had been discovered, namely b52 and c14. CRISPR typing revealed 10 genotypes, including G1, G7, G7-b4''', G7-b52, G7-c2 -, G8, G22, G22-a4 -, G22-b4''', and G22-c14, of which 6 were newly discovered genotypes. Among the 125 experimental strains, G7 was the main genotype, accounting for 65.6% (82/125), which was distributed in 6 prefecture level citys and 1 region of Tibet Autonomous Region. Next were G22 and G7-c2 - genetypes, accounting for 14.4% (18/125) and 11.2% (14/125), respectively. G22 gene type was distributed in Nagqu, Changdu, Lhasa citys, and Ngari Prefecture, while G7-c2 - genetype was distributed in Shigatse and Shannan cities. Conclusion:The CRISPR locus of Yersinia pestis in natural plague focus of Tibet Autonomous Region is highly polymorphic, and the Yersinia pestis strains with different genotypes have obvious regional distribution characteristics.

Result Analysis
Print
Save
E-mail