1.The Mesencephalic Locomotor Region for Locomotion Control
Xing-Chen GUO ; Yan XIE ; Xin-Shuo WEI ; Wen-Fen LI ; Ying-Yu SUN
Progress in Biochemistry and Biophysics 2025;52(7):1804-1816
		                        		
		                        			
		                        			Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats. 
		                        		
		                        		
		                        		
		                        	
2.Targeting stroma and tumor, silencing galectin 1 treats orthotopic mouse hepatocellular carcinoma.
Tahereh SETAYESH ; Ying HU ; Farzam VAZIRI ; Xin CHEN ; Jinping LAI ; Dongguang WEI ; Yu-Jui YVONNE WAN
Acta Pharmaceutica Sinica B 2024;14(1):292-303
		                        		
		                        			
		                        			This study examines inhibiting galectin 1 (Gal1) as a treatment option for hepatocellular carcinoma (HCC). Gal1 has immunosuppressive and cancer-promoting roles. Our data showed that Gal1 was highly expressed in human and mouse HCC. The levels of Gal1 positively correlated with the stages of human HCC and negatively with survival. The roles of Gal1 in HCC were studied using overexpression (OE) or silencing using Igals1 siRNA delivered by AAV9. Prior to HCC initiation induced by RAS and AKT mutations, lgals1-OE and silencing had opposite impacts on tumor load. The treatment effect of lgals1 siRNA was further demonstrated by intersecting HCC at different time points when the tumor load had already reached 9% or even 42% of the body weight. Comparing spatial transcriptomic profiles of Gal1 silenced and OE HCC, inhibiting matrix formation and recognition of foreign antigen in CD45+ cell-enriched areas located at tumor-margin likely contributed to the anti-HCC effects of Gal1 silencing. Within the tumors, silencing Gal1 inhibited translational initiation, elongation, and termination. Furthermore, Gal1 silencing increased immune cells as well as expanded cytotoxic T cells within the tumor, and the anti-HCC effect of lgals1 siRNA was CD8-dependent. Overall, Gal1 silencing has a promising potential for HCC treatment.
		                        		
		                        		
		                        		
		                        	
3. The regulatory mechanism of physiological sleep-wake
Wei-Jie LU ; Kai LIU ; Xin-Ke ZHAO ; Qian-Rong LI ; Ying-Dong LI ; Guo-Tai WU
Chinese Pharmacological Bulletin 2024;40(3):421-426
		                        		
		                        			
		                        			 This paper explains the mechanism of the mutual switching between physiological sleep and wakefulness from the aspects of the sleep circadian system and the sleep homeostasis system. In the circadian rhythm system, with the suprachiasmatic nucleus as the core, the anatomical connections between the suprachiasmatic nucleusand various systems that affect sleep are summarized, starting from the suprachiasmatic nucleus, passing through the four pathways of the melatonin system, namely, subventricular area of the hypothalamus, the ventrolateral nucleus of the preoptic area, orexin neurons, and melatonin, then the related mechanisms of their regulation of sleep and wakefulness are expounded. In the sleep homeostasis system, with adenosine and prostaglandin D2 as targets, the role of hypnogen in sleep arousal mechanisms in regulation is also expounded. 
		                        		
		                        		
		                        		
		                        	
4.Recent advances in small-molecule inhibitors targeting influenza virus RNA-dependent RNA polymerase
Hui-nan JIA ; Rui-fang JIA ; Ji-wei ZHANG ; Yuan-min JIANG ; Chuan-feng LIU ; Ying ZHANG ; Xin-yong LIU ; Peng ZHAN
Acta Pharmaceutica Sinica 2024;59(1):43-60
		                        		
		                        			
		                        			 Influenza virus causes serious threat to human life and health. Due to the inherent high variability of influenza virus, clinically resistant mutant strains of currently approved anti-influenza virus drugs have emerged. Therefore, it is urgent to develop antiviral drugs with new targets or mechanisms of action. RNA-dependent RNA polymerase is directly responsible for viral RNA transcription and replication, and plays key roles in the viral life cycle, which is considered an important target of anti-influenza drug design. From the point of view of medicinal chemistry, this review summarizes current advances in diverse small-molecule inhibitors targeting influenza virus RNA-dependent RNA polymerase, hoping to provide valuable reference for development of novel antiviral drugs. 
		                        		
		                        		
		                        		
		                        	
		                				5.Specific DNA barcodes screening, germplasm resource identification, and genetic diversity analysis of Platycodon grandiflorum 
		                			
		                			Xin WANG ; Yue SHI ; Jin-hui MAN ; Yu-ying HUANG ; Xiao-qin ZHANG ; Ke-lu AN ; Gao-jie HE ; Zi-qi LIU ; Fan-yuan GUAN ; Yu-yan ZHENG ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(1):243-252
		                        		
		                        			
		                        			 Platycodonis Radix is the dry root of 
		                        		
		                        	
6.The construction of integrated urban medical groups in China:Typical models,key issues and path optimization
Hua-Wei TAN ; Xin-Yi PENG ; Hui YAO ; Xue-Yu ZHANG ; Le-Ming ZHOU ; Ying-Chun CHEN
Chinese Journal of Health Policy 2024;17(1):9-16
		                        		
		                        			
		                        			This paper outlines the common aspects of constructing integrated urban medical groups,focusing on governance,organizational restructuring,operational modes,and mechanism synergy.It then delves into the challenges in China's group construction,highlighting issues with power-responsibility alignment,capacity evolution,incentive alignment,and performance evaluation.Finally,the paper suggests strategies to enhance China's compact urban medical groups,focusing on governance reform,capacity building,benefit integration,and performance evaluation.
		                        		
		                        		
		                        		
		                        	
7.Impact of maternal serum vitamin D status on fetal long bone development
Nan JIANG ; Meijuan LI ; Xin LI ; Ying XU ; Tingting WEI ; Chen LEI
Chinese Journal of Endocrinology and Metabolism 2024;40(2):104-107
		                        		
		                        			
		                        			Objective:To investigate the effect of maternal serum vitamin D on fetal long bone development.Methods:A retrospective collection of 1 193 first-time pregnant women who visited our hospital′s prenatal diagnosis center from July 2018 to June 2020 was conducted. All underwent prenatal fetal ultrasound examination and serum vitamin D level detection. Based on the dosage of vitamin D administered after the first vitamin D test, participants were divided into the basic dosage group(vitamin D 3, 1 600 IU/d, orally) and the adequate supplementation group(vitamin D 2 injection 600 000 IU/2 weeks, intramuscular injection). The serum 25-(OH)D levels of the two groups of pregnant women were compared at 12 and 24 weeks of treatment, as well as the long bone growth of their fetuses. Multivariable logistic regression analysis was used to analyze the factors influencing fetal long length. Results:Compared to the basic dosage group, the adequate supplementation group showed a significant increase in serum 25-(OH)D levels in pregnant women at 8 weeks, 12 weeks, and 24 weeks of treatment. The adequate supplementation group also significantly increased fetal long bone length at 12 weeks[(4.93±0.75) cm vs(4.61±0.73) cm, P<0.05] and 24 weeks of treatment [(7.92±0.84) cm vs(7.25±0.92) cm, P<0.05], with the difference between the two groups being more pronounced at 24 weeks of treatment. Maternal height, basal vitamin D level, and vitamin D level at 24 weeks of gestation were positively correlated with fetal long bone length. Conclusion:Pregnant women should maintain a relatively high level of basal vitamin D, and pay attention to the effect of vitamin D level on the fetus. A sufficient amount of vitamin D supplementation is of great significance for the long bone development of the fetus.
		                        		
		                        		
		                        		
		                        	
8.Clinical efficacy of double-bundle and double-tunnel enhanced reconstruction in the treatment of anterior cruciate ligament injury
Bao LI ; Xin-Wei LIU ; Yang SUN ; Ning SUN ; Yu WANG ; Ying-Chao DUAN ; Xiang-Hong CUI ; Yi-Peng SUN ; Hong YUAN
China Journal of Orthopaedics and Traumatology 2024;37(7):649-654
		                        		
		                        			
		                        			Objective To explore the clinical efficacy of double beam double tunnel enhanced reconstruction technique in the treatment of knee anterior cruciate ligament(ACL)training injuries.Methods Twenty-nine cases of ACL injury of knee joint from January 2021 to December 2021 were retrospectively analyzed.All the cases were underwent ligament reconstruc-tion surgery.Cases were grouped by surgical technique:there were 14 patients in conventional reconstruction group,including 13 males and 1 female,aged from 22 to 31 years old with an average of(27.07±7.28)years old,autogenous hamstring tendon was used for ligament reconstruction.There were 15 patients in the enhanced reconstruction group,including 13 males and 2 females,aged from 25 to 34 years old with an average of(29.06±4.23)years old,double tunnel ligament reconstruction,the autogenous hamstring muscle was used as the anteromedial bundle,and the posterolateral bundle was replaced by a high-strength line.The difference between knee tibial anterior distance,Lysholm score,International Knee Literature Committee(IKDC)subjective score,Tegner motor level score and visual analog scale(VAS)at 6th and 12th months after the surgery,limb symmetry index(LSI)were recorded at the last follow-up and surgery-related adverse effects during follow-up.Results All patients were followed up,ranged from 13 to 15 months with an average of(13.7±0.8)months.There were no serious adverse reactions related to surgery during the period.There was no statistical difference between the preoperative general data and the observation index of the two groups(P>0.05).The difference in tibial anterior distance at 6 and 12 months in the enhanced re-construction group(1.45±0.62)mm and(1.74±0.78)mm which were lower those that in the conventional reconstruction group(2.42±0.60)mm and(2.51±0.63)mm(P<0.05).There was no significant difference in postoperative Lysholm score,Tegner motor level score,IKDC score,VAS,and limb symmetry index at the last follow-up(P>0.05).Conclusion The enhanced recon-struction technique can more effectively maintain the stability of the knee joint and has no significant effect on the postoperative knee joint function compared with the traditional ligament reconstruction technique.The short-term curative effect is satisfac-tory,and it is suitable for the group with high sports demand.
		                        		
		                        		
		                        		
		                        	
9.Rapid screening the chemical components in Jiawei Dingzhi pills using precursor ion selection UHPLC-Q-TOF-MS/MS
Zu-ying WEI ; Cong FANG ; Kui CHEN ; Hao-lan YANG ; Jie LIU ; Zhi-xin JIA ; Yue-ting LI ; Hong-bin XIAO
Acta Pharmaceutica Sinica 2024;59(8):2350-2364
		                        		
		                        			
		                        			 A precursor ion selection (PIS) based ultra high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS) analytical method was used to screen the chemical components in Jiawei Dingzhi pills (JWDZP) comprehensively and rapidly. To compile the components of the compound medicine, a total of 1 921 components were found utilizing online databases and literature. After verifying the sources, unifying the component names, merging the multi-flavor attributed components, and removing the weak polar molecules, 450 components were successfully retained. The Acquity UPLC HSS T3 column (100 mm × 2.1 mm, 1.8 μm) was used, with a 0.1% formic acid water (A)-acetonitrile (B) as the mobile phase. The flow rate was 0.35 mL·min-1, the column temperature was 35 ℃, and an electrospray ion source was used. Data was collected with the PIS strategy in both positive and negative ion modes. Compounds were screened through matching accurate molecular weight of the database, and identified according to MS/MS data (characteristic fragment ions and neutral loss), with comparison of reference. Some compounds were confirmed using standard products. A total of 176 compounds were screened out in the extract of JWDZP, among which 26 compounds were confirmed by standard products. These compounds include 96 components from the sovereign drug, and 34 coefflux components with low ion intensity. The PIS-UHPLC-Q-TOF-MS/MS method established in this study can quickly and comprehensively screen the chemical components of JWDZP, which enhanced the screening rate of components with co-elution compounds of low ion intensities and provided a basis for the study of the material foundation of JWDZP. 
		                        		
		                        		
		                        		
		                        	
		                				10.Identification and quality evaluation of germplasm resources of commercial Acanthopanax senticosus  based on DNA barcodes and HPLC
		                			
		                			Shan-hu LIU ; Zhi-fei ZHANG ; Yu-ying HUANG ; Zi-qi LIU ; Wen-qin CHEN ; La-ha AMU ; Xin WANG ; Yue SHI ; Xiao-qin ZHANG ; Gao-jie HE ; Ke-lu AN ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(7):2171-2178
		                        		
		                        			
		                        			 italic>Acanthopanax senticosus is one of the genuine regional herb in Northeast China. In this study, we identified the germplasm resources of commercial 
            
Result Analysis
Print
Save
E-mail