1.Optimization and Mechanism Exploration of Tusizi Prescription for Ovarian Reserve Function Based on Uniform Design Method
Yuan LI ; Hanqian DU ; Jiashan LI ; Li GUO ; Zehui LI ; Na LIN ; Ying XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):53-62
ObjectiveTo optimize Tusizi prescription for ovarian reserve function based on the uniform design method combined with in vitro experiments and explore the underlying mechanisms of this prescription. MethodsThe uniform design method was adopted to design a 5-factor 11-level experiment on the water extract of Tusizi prescription. The cell-counting kit-8 (CCK-8) assay was employed to measure the viability of human ovarian granulosa cells (KGN cells) treated with Tusizi prescription extracts 1-11, and multivariate regression analysis was performed to determine the optimal herb ratio in this prescription. The potential targets of active ingredients in the prescription were retrieved from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM). The common targets shared by Tusizi prescription and diminished ovarian reserve (DOR) were selected and imported into search tool for the retrieval of interacting genes/proteins (STRING) to construct a protein-protein interaction (PPI) network and into gene function annotation database (DAVID) for gene ontology (GO) analysis. The CCK-8 assay was used to measure the viability of ovarian germline stem cells treated with hyperoside. The CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, terminal-deoxynucleoitidyl transferase mediated nick-end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA) were employed to examine the proliferation, apoptosis, and estradiol (E2) secretion of KGN cells treated with the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design. On this basis, the optimal prescription composition for maximizing the effect on ovarian reserve function was determined and preliminary insights into the underlying mechanisms of this prescription were gained. ResultsA total of 147 common targets were obtained from 278 targets of Tusizi prescription and 1 721 targets of DOR. GO analysis revealed 194 biological processes, primarily involving cellular responses to exogenous compound stimuli, negative regulation of apoptotic process, and positive regulation of cell proliferation. It identified 84 cellular components, including cell membrane, mitochondria, and neuronal cell body, as well as 144 molecular functions such as enzyme binding, estrogen response element binding, and nuclear estrogen receptor binding. The multivariate regression analysis revealed that when Tusizi prescription was composed of Cuscutae Semen, Lycii Fructus, Dioscoreae Rhizoma, Poria, and Nelumbinis Semen in a ratio of 27∶30∶17∶12∶14, the water extract of Tusizi prescription had the best effect of enhancing the viability of KGN cells. CCK-8 results showed that compared with the normal group, the hyperoside group demonstrated increased viability of ovarian germline stem cells (P<0.01). The CCK-8, EdU, and ELISA results showed that compared with the normal group, the optimal prescription screened by uniform design and the water extract 11 of Tusizi prescription increased the proliferation and reduced the apoptosis of KGN cells (P<0.05, P<0.01). ELISA results showed that compared with the normal group, the water extract 11 of Tusizi prescription promoted the E2 secretion of KGN cells (P<0.05), while the optimal prescription screened by uniform design had no significant effect on the E2 secretion. ConclusionBoth the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 27∶30∶17∶12∶14) can improve the ovarian reserve function, and the former has better effect. Tusizi prescription can modulate biological processes (such as cell proliferation and apoptosis) and molecular functions (such as enzyme binding and estrogen response element binding) through active components like hyperoside to promote the proliferation and E2 secretion and inhibit the apoptosis of KGN cells, thereby protecting the ovarian reserve function.
2.Optimization and Mechanism Exploration of Tusizi Prescription for Ovarian Reserve Function Based on Uniform Design Method
Yuan LI ; Hanqian DU ; Jiashan LI ; Li GUO ; Zehui LI ; Na LIN ; Ying XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):53-62
ObjectiveTo optimize Tusizi prescription for ovarian reserve function based on the uniform design method combined with in vitro experiments and explore the underlying mechanisms of this prescription. MethodsThe uniform design method was adopted to design a 5-factor 11-level experiment on the water extract of Tusizi prescription. The cell-counting kit-8 (CCK-8) assay was employed to measure the viability of human ovarian granulosa cells (KGN cells) treated with Tusizi prescription extracts 1-11, and multivariate regression analysis was performed to determine the optimal herb ratio in this prescription. The potential targets of active ingredients in the prescription were retrieved from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM). The common targets shared by Tusizi prescription and diminished ovarian reserve (DOR) were selected and imported into search tool for the retrieval of interacting genes/proteins (STRING) to construct a protein-protein interaction (PPI) network and into gene function annotation database (DAVID) for gene ontology (GO) analysis. The CCK-8 assay was used to measure the viability of ovarian germline stem cells treated with hyperoside. The CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, terminal-deoxynucleoitidyl transferase mediated nick-end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA) were employed to examine the proliferation, apoptosis, and estradiol (E2) secretion of KGN cells treated with the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design. On this basis, the optimal prescription composition for maximizing the effect on ovarian reserve function was determined and preliminary insights into the underlying mechanisms of this prescription were gained. ResultsA total of 147 common targets were obtained from 278 targets of Tusizi prescription and 1 721 targets of DOR. GO analysis revealed 194 biological processes, primarily involving cellular responses to exogenous compound stimuli, negative regulation of apoptotic process, and positive regulation of cell proliferation. It identified 84 cellular components, including cell membrane, mitochondria, and neuronal cell body, as well as 144 molecular functions such as enzyme binding, estrogen response element binding, and nuclear estrogen receptor binding. The multivariate regression analysis revealed that when Tusizi prescription was composed of Cuscutae Semen, Lycii Fructus, Dioscoreae Rhizoma, Poria, and Nelumbinis Semen in a ratio of 27∶30∶17∶12∶14, the water extract of Tusizi prescription had the best effect of enhancing the viability of KGN cells. CCK-8 results showed that compared with the normal group, the hyperoside group demonstrated increased viability of ovarian germline stem cells (P<0.01). The CCK-8, EdU, and ELISA results showed that compared with the normal group, the optimal prescription screened by uniform design and the water extract 11 of Tusizi prescription increased the proliferation and reduced the apoptosis of KGN cells (P<0.05, P<0.01). ELISA results showed that compared with the normal group, the water extract 11 of Tusizi prescription promoted the E2 secretion of KGN cells (P<0.05), while the optimal prescription screened by uniform design had no significant effect on the E2 secretion. ConclusionBoth the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 27∶30∶17∶12∶14) can improve the ovarian reserve function, and the former has better effect. Tusizi prescription can modulate biological processes (such as cell proliferation and apoptosis) and molecular functions (such as enzyme binding and estrogen response element binding) through active components like hyperoside to promote the proliferation and E2 secretion and inhibit the apoptosis of KGN cells, thereby protecting the ovarian reserve function.
3.Value of serum Aldo-keto reductase family 1 member B10 (AKR1B10) in diagnosis of hepatocellular carcinoma
Yunling DU ; Changjiang SHI ; Fangyuan GAO ; Mengna ZHANG ; Lingling WANG ; Zhuqing ZHANG ; Ying MING ; Shoujun XIE
Journal of Clinical Hepatology 2025;41(4):684-689
ObjectiveTo investigate the expression of serum Aldo-keto reductase family 1 member B10 (AKR1B10) in patients with hepatocellular carcinoma (HCC) in northern China, and to provide a new and valuable biomarker for the clinical diagnosis of HCC. MethodsThis study was conducted among 102 patients with HCC, 119 patients with benign liver disease, and 132 patients with other malignant tumors who attended The Affiliated Hospital of Chengde Medical University and 148 healthy individuals who underwent physical examination from May 2020 to May 2024. ELISA and chemiluminescence were used to measure the serum levels of AKR1B10 and alpha-fetoprotein (AFP). The Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups, and the Kruskal-Wallis H test was used for comparison between three groups and further comparison between two groups; the chi-square test was used for comparison of categorical data between groups. The area under the ROC curve (AUC) was used to assess diagnostic efficiency. ResultsThe expression level of AKR1B10 was 3 053.79 (1 475.67 — 4 605.86) pg/mL in the HCC group, 1 324.42 (659.68 — 2 023.88) pg/mL in the benign liver disease group, 660.68 (377.56 — 2 087.77) pg/mL in the other malignant tumor group, and 318.30 (82.73 — 478.82) pg/mL in the healthy group, with a significant difference between the four groups (H=240.86, P<0.001), and further comparison between two groups showed that the HCC group had a significantly higher level than the other three groups (all P<0.001). The ROC curve analysis of the HCC group and the other three groups showed that serum AKR1B10 had an optimal cut-off value of 1 584.97 pg/mL in the diagnosis of HCC, with an AUC of 0.86 (95% confidence interval [CI]: 0.82 — 0.90), a sensitivity of 74.3%, and a specificity of 85.2%. Compared with each indicator alone, a combination of AKR1B10 and AFP could improve the sensitivity (81.8%) and specificity (91.4%) of HCC diagnosis. AKR1B10 had an AUC of 0.84 (95%CI: 0.78 — 0.90) in the diagnosis of patients with early- or middle-stage HCC, with a sensitivity of 76.2% and a specificity of 81.2%. AKR1B10 had an AUC of 0.85 (95%CI: 0.77 — 0.92) in the diagnosis of patients with AFP-negative HCC, with a sensitivity of 81.6% and a specificity of 79.9%. ConclusionAKR1B10 is a promising serological marker for the diagnosis of HCC, and a combination of AKR1B10 and AFP can improve the detection rate of HCC patients in northern China, especially those with early- or middle-stage HCC and AFP-negative HCC.
4.Correlation between the health literacy of reducing salt,oil and sugar on overweight and obesity among fourthgrade elementary school students and their parents
HAO Ying, LIU Danru, CHEN Xianxian, REN Jie, XU Cong, DU Fengjun, GUO Xiaolei, DONG Jing, MA Jixiang
Chinese Journal of School Health 2025;46(4):489-493
Objective:
To analyze the effects of health literacy on overweight and obesity among primary school students and their parents in terms of salt, oil and sugar reduction (referred to as the "three reductions"), so as to provide a theoretical basis for the development of obesity control measures.
Methods:
From March to April 2024, a total of 1 022 fourthgrade primary school students and 913 parents were surveyed in 24 classes in six counties in Shandong Province using multistage cluster random sampling, and physical measurements of primary school students were conducted. Pearsons correlation analysis and ordered multivariate Logistic regression were used to investigate the associations between health literacy of primary school students and their parents with overweight and obesity among children.
Results:
The detection rates of overweight and obesity primary school students in Shandong Province were 14.87% and 24.66%, respectively, with significant sex difference in obesity rate (29.46% for boys and 19.76% for girls) (χ2=12.93, P<0.01). In addition to students reducing oil scores, parental reducing salt,reducing oil,reducing sugar, comprehensive health literacy scores and students reducing salt,reducing sugar and comprehensive health literacy scores showed a negative relationship with students overweight and obesity (r=-0.10, -0.08, -0.07, -0.10, -0.04, -0.07, -0.03, P<0.05). The overweight and obesity rates among primary school students with high parental reducing salt,reducing oil,reducing sugar and composite health literacy scores were lower (OR=0.69, 0.69, 0.71, 0.63, P<0.05); and the overweight and obesity rate among students with high parental and low parental and high and low parental health literacy scores were lower (OR=0.68, 0.57, P<0.05).
Conclusion
Improving health literacy regarding "three reductions" for parents and children, especially parents, can effectively reduce the risk of childhood overweight and obesity.
5.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
6.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
7.Pharmacokinetic interactions between empagliflozin and donafenib/lenvatinib in rats
Ying LI ; Zihan LIU ; Wenyu DU ; Jing AN ; Congyang DING ; Yue ZHAO ; Bingnan REN ; Zefang YU ; Yajing LI ; Zhanjun DONG
Journal of Clinical Hepatology 2025;41(9):1853-1860
ObjectiveTo investigate the influence of empagliflozin combined with donafenib or lenvatinib on the pharmacokinetic parameters of each drug, and to provide a reference for combined medication in clinical practice. MethodsA total of 48 healthy male Sprague-Dawley rats were divided into 8 groups: empagliflozin group 1 and 2, donafenib group, lenvatinib group, donafenib pretreatment+empagliflozin group, lenvatinib pretreatment + empagliflozin group, empagliflozin pretreatment+donafenib group, and empagliflozin pretreatment+lenvatinib group, with 6 rats in each group. The doses of empagliflozin, donafenib, and lenvatinib were 2.5 mg/kg, 40 mg/kg, and 1.2 mg/kg, respectively. The rats in the empagliflozin group, donafenib group, and lenvatinib group were given a blank solvent by gavage for 7 consecutive days, followed by a single dose of empagliflozin, donafenib, or lenvatinib on day 7 after the administration of the blank solvent; the rats in the pretreatment groups were given the pretreatment drug by gavage for 7 consecutive days, followed by a single dose of drug combination on day 7 after administration of the pretreatment drug. Blood samples were collected at different time points, and plasma was separated to measure the concentration of each drug. A validated ultra-performance liquid chromatography-tandem mass spectrometry method was used to measure the plasma concentrations of donafenib, lenvatinib, and empagliflozin, and a non-compartmental model was used to calculate the main pharmacokinetic parameters of each drug (area under the plasma concentration-time curve [AUC], time to peak [Tmax], peak concentration [Cmax], and half-life time [t1/2]). The independent-samples t test was used for comparison of normally distributed continuous data between two groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups. ResultsCompared with the empagliflozin group, the donafenib pretreatment+empagliflozin group had significant increases in the AUC0-t and AUC0-∞ of empagliflozin (P=0.011 and 0.008), while the lenvatinib pretreatment+empagliflozin group had no significant change in the AUC of empagliflozin, with a slightly shorter Tmax (P=0.019). Compared with the donafenib group, the empagliflozin pretreatment+donafenib group had significant increases in the AUC0-t and AUC0-∞ of donafenib (P=0.027 and 0.025), as well as a significant increase in Cmax (P=0.015) and significant reductions in CLz/F and Vz/F (P=0.005 and 0.004); compared with the lenvatinib group, the empagliflozin pretreatment+lenvatinib group had a reduction in the t1/2 of lenvatinib by approximately 5 hours (P=0.002), with a trend of reduction in AUC0-t (P0.05). ConclusionEmpagliflozin combined with donafenib may alter the pharmacokinetic parameters of both drugs, leading to a significant increase in the exposure levels of both drugs, and efficacy and adverse reactions should be monitored during co-administration. There are no significant changes in the exposure levels of empagliflozin and lenvatinib during co-administration.
8.Research Progress on Mechanism of NAD+ Metabolic Remodeling in Occurrence and Development of Glioblastoma Multiforme
Jiajia CHE ; Jinyuan DU ; Junhao BAO ; Xiting PAN ; Chengwen WANG ; Chuan XU ; Ying SHI
Cancer Research on Prevention and Treatment 2025;52(10):861-868
Gliomas, especially high-grade gliomas such as glioblastoma multiforme (GBM), are primary malignant tumors of the central nervous system, characterized by high proliferative capacity, invasiveness, and therapeutic resistance. The development of GBM relies heavily on continuous metabolic reprogramming to adapt to the unique intracranial microenvironment, with nicotinamide adenine dinucleotide (NAD+) metabolic remodeling playing a pivotal role. Dysregulation of NAD+ and its associated metabolic pathways sustains increased intracellular NAD+ levels, which drive the malignant proliferation and invasive potential of GBM, correlating with worsened patient prognosis. This review systematically summarizes the current research landscape of NAD+ metabolic remodeling in GBM, elucidates the mechanisms by which NAD+ contributes to GBM pathogenesis and progression, and explores the clinical potential of NAD+-targeted diagnostic and therapeutic strategies to provide novel insights and directions for the clinical management of GBM.
9.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
10.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.


Result Analysis
Print
Save
E-mail