1.Research progress of thermal ablation in the treatment of thyroid micropapillary carcinoma
Jin LIU ; Xiaoping WANG ; Lindi QU ; Qun WANG ; Ying GAO ; Yuan GU ; Yifei GONG ; Tao LI ; Xiaodan TANG ; Kunhe SHI
Journal of Xi'an Jiaotong University(Medical Sciences) 2024;45(6):1041-1046
Thyroid cancer is the most common malignant tumor of the head and neck, among which papillary thyroid carcinoma is the most common. Papillary thyroid carcinoma with a diameter of ≤ 1.0 cm is called thyroid micropapillary carcinoma. In recent years, thermal ablation technology for the treatment of thyroid micropapillary carcinoma has developed rapidly at home and abroad. At present, many guidelines, consensus and clinical studies related to thermal ablation treatment of thyroid micropapillary carcinoma have been published at home and abroad. Based on the existing literature, guidelines and clinical studies, this article summarizes, discusses and analyzes the advantages, indications, efficacy, safety, and existing problems of thermal ablation therapy for thyroid cancer.
2.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
3.HbA1c comparison and diagnostic efficacy analysis of multi center different glycosylated hemoglobin detection systems.
Ping LI ; Ying WU ; Yan XIE ; Feng CHEN ; Shao qiang CHEN ; Yun Hao LI ; Qing Qing LU ; Jing LI ; Yong Wei LI ; Dong Xu PEI ; Ya Jun CHEN ; Hui CHEN ; Yan LI ; Wei WANG ; Hai WANG ; He Tao YU ; Zhu BA ; De CHENG ; Le Ping NING ; Chang Liang LUO ; Xiao Song QIN ; Jin ZHANG ; Ning WU ; Hui Jun XIE ; Jina Hua PAN ; Jian SHUI ; Jian WANG ; Jun Ping YANG ; Xing Hui LIU ; Feng Xia XU ; Lei YANG ; Li Yi HU ; Qun ZHANG ; Biao LI ; Qing Lin LIU ; Man ZHANG ; Shou Jun SHEN ; Min Min JIANG ; Yong WU ; Jin Wei HU ; Shuang Quan LIU ; Da Yong GU ; Xiao Bing XIE
Chinese Journal of Preventive Medicine 2023;57(7):1047-1058
Objective: Compare and analyze the results of the domestic Lanyi AH600 glycated hemoglobin analyzer and other different detection systems to understand the comparability of the detection results of different detectors, and establish the best cut point of Lanyi AH600 determination of haemoglobin A1c (HbA1c) in the diagnosis of diabetes. Methods: Multi center cohort study was adopted. The clinical laboratory departments of 18 medical institutions independently collected test samples from their respective hospitals from March to April 2022, and independently completed comparative analysis of the evaluated instrument (Lanyi AH600) and the reference instrument HbA1c. The reference instruments include four different brands of glycosylated hemoglobin meters, including Arkray, Bio-Rad, DOSOH, and Huizhong. Scatter plot was used to calculate the correlation between the results of different detection systems, and the regression equation was calculated. The consistency analysis between the results of different detection systems was evaluated by Bland Altman method. Consistency judgment principles: (1) When the 95% limits of agreement (95% LoA) of the measurement difference was within 0.4% HbA1c and the measurement score was≥80 points, the comparison consistency was good; (2) When the measurement difference of 95% LoA exceeded 0.4% HbA1c, and the measurement score was≥80 points, the comparison consistency was relatively good; (3) The measurement score was less than 80 points, the comparison consistency was poor. The difference between the results of different detection systems was tested by paired sample T test or Wilcoxon paired sign rank sum test; The best cut-off point of diabetes was analyzed by receiver operating characteristic curve (ROC). Results: The correlation coefficient R2 of results between Lanyi AH600 and the reference instrument in 16 hospitals is≥0.99; The Bland Altman consistency analysis showed that the difference of 95% LoA in Nanjing Maternity and Child Health Care Hospital in Jiangsu Province (reference instrument: Arkray HA8180) was -0.486%-0.325%, and the measurement score was 94.6 points (473/500); The difference of 95% LoA in the Tibetan Traditional Medical Hospital of TAR (reference instrument: Bio-Rad Variant II) was -0.727%-0.612%, and the measurement score was 89.8 points; The difference of 95% LoA in the People's Hospital of Chongqing Liang Jiang New Area (reference instrument: Huizhong MQ-2000PT) was -0.231%-0.461%, and the measurement score was 96.6 points; The difference of 95% LoA in the Taihe Hospital of traditional Chinese Medicine in Anhui Province (reference instrument: Huizhong MQ-2000PT) was -0.469%-0.479%, and the measurement score was 91.9 points. The other 14 hospitals, Lanyi AH600, were compared with 4 reference instrument brands, the difference of 95% LoA was less than 0.4% HbA1c, and the scores were all greater than 95 points. The results of paired sample T test or Wilcoxon paired sign rank sum test showed that there was no statistically significant difference between Lanyi AH600 and the reference instrument Arkray HA8180 (Z=1.665,P=0.096), with no statistical difference. The mean difference between the measured values of the two instruments was 0.004%. The comparison data of Lanyi AH600 and the reference instrument of all other institutions had significant differences (all P<0.001), however, it was necessary to consider whether it was within the clinical acceptable range in combination with the results of the Bland-Altman consistency analysis. The ROC curve of HbA1c detected by Lanyi AH600 in 985 patients with diabetes and 3 423 patients with non-diabetes was analyzed, the area under curve (AUC) was 0.877, the standard error was 0.007, and the 95% confidence interval 95%CI was (0.864, 0.891), which was statistically significant (P<0.001). The maximum value of Youden index was 0.634, and the corresponding HbA1c cut point was 6.235%. The sensitivity and specificity of diabetes diagnosis were 76.2% and 87.2%, respectively. Conclusion: Among the hospitals and instruments currently included in this study, among these four hospitals included Nanjing Maternity and Child Health Care Hospital in Jiangsu Province (reference instrument: Arkray HA8180), Tibetan Traditional Medical Hospital of TAR (reference instrument: Bio-Rad Variant Ⅱ), the People's Hospital of Chongqing Liang Jiang New Area (reference instrument: Huizhong MQ-2000PT), and the Taihe Hospital of traditional Chinese Medicine in Anhui Province (reference instrument: Huizhong MQ-2000PT), the comparison between Lanyi AH600 and the reference instruments showed relatively good consistency, while the other 14 hospitals involved four different brands of reference instruments: Arkray, Bio-Rad, DOSOH, and Huizhong, Lanyi AH600 had good consistency with its comparison. The best cut point of the domestic Lanyi AH600 for detecting HbA1c in the diagnosis of diabetes is 6.235%.
Pregnancy
;
Child
;
Humans
;
Female
;
Glycated Hemoglobin
;
Cohort Studies
;
Diabetes Mellitus/diagnosis*
;
Sensitivity and Specificity
;
ROC Curve
4.Genotype-environment interaction on arterial stiffness: A pedigree-based study.
Xue Heng WANG ; Si Yue WANG ; He Xiang PENG ; Meng FAN ; Huang Da GUO ; Tian Jiao HOU ; Meng Ying WANG ; Yi Qun WU ; Xue Ying QIN ; Xun TANG ; Jin LI ; Da Fang CHEN ; Yong Hua HU ; Tao WU
Journal of Peking University(Health Sciences) 2023;55(3):400-407
OBJECTIVE:
To utilized the baseline data of the Beijing Fangshan Family Cohort Study, and to estimate whether the association between a healthy lifestyle and arterial stiffness might be modified by genetic effects.
METHODS:
Probands and their relatives from 9 rural areas in Fangshan district, Beijing were included in this study. We developed a healthy lifestyle score based on five lifestyle behaviors: smoking, alcohol consumption, body mass index (BMI), dietary pattern, and physical activity. The measurements of arterial stiffness were brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI). A variance component model was used to determine the heritability of arterial stiffness. Genotype-environment interaction effects were performed by the maximum likelihood methods. Subsequently, 45 candidate single nucleotide polymorphisms (SNPs) located in the glycolipid metabolism pathway were selected, and generalized estimated equations were used to assess the gene-environment interaction effects between particular genetic loci and healthy lifestyles.
RESULTS:
A total of 6 302 study subjects across 3 225 pedigrees were enrolled in this study, with a mean age of 56.9 years and 45.1% male. Heritability of baPWV and ABI was 0.360 (95%CI: 0.302-0.418) and 0.243 (95%CI: 0.175-0.311), respectively. Significant genotype-healthy diet interaction on baPWV and genotype-BMI interaction on ABI were observed. Following the findings of genotype-environment interaction analysis, we further identified two SNPs located in ADAMTS9-AS2 and CDH13 might modify the association between healthy dietary pattern and arterial stiffness, indicating that adherence to a healthy dietary pattern might attenuate the genetic risk on arterial stiffness. Three SNPs in CDKAL1, ATP8B2 and SLC30A8 were shown to interact with BMI, implying that maintaining BMI within a healthy range might decrease the genetic risk of arterial stiffness.
CONCLUSION
The current study discovered that genotype-healthy dietary pattern and genotype-BMI interactions might affect the risk of arterial stiffness. Furthermore, we identified five genetic loci that might modify the relationship between healthy dietary pattern and BMI with arterial stiffness. Our findings suggested that a healthy lifestyle may reduce the genetic risk of arterial stiffness. This study has laid the groundwork for future research exploring mechanisms of arterial stiffness.
Humans
;
Male
;
Middle Aged
;
Female
;
Ankle Brachial Index
;
Cohort Studies
;
Gene-Environment Interaction
;
Vascular Stiffness/genetics*
;
Pedigree
;
Pulse Wave Analysis/methods*
;
Genotype
5.Metformin use and risk of ischemic stroke in patients with type 2 diabetes: A cohort study.
Huan YU ; Ruo Tong YANG ; Si Yue WANG ; Jun Hui WU ; Meng Ying WANG ; Xue ying QIN ; Tao WU ; Da Fang CHEN ; Yi Qun WU ; Yong Hua HU
Journal of Peking University(Health Sciences) 2023;55(3):456-464
OBJECTIVE:
To explore the association between the use of metformin and the risk of ischemic stroke in patients with type 2 diabetes.
METHODS:
A prospective cohort study was designed from the Fangshan family cohort in Beijing. According to metformin use at baseline, 2 625 patients with type 2 diabetes in Fangshan, Beijing were divided into metformin group or non-metformin group and the incidence of ischemic stroke between the different groups during follow-up was estimated and compared by Cox proportional hazard regression model. The participants with metformin were first compared with all the parti-cipants who did not use metformin, and then were further compared with those who did not use hypoglycemic agents and those who used other hypoglycemic agents.
RESULTS:
The patients with type 2 diabetes were with an average age of (59.5±8.7) years, and 41.9% of them were male. The median follow-up time was 4.5 years. A total of 84 patients developed ischemic stroke during follow-up, with a crude incidence of 6.4 (95%CI: 5.0-7.7) per 1 000 person-years. Among all the participants, 1 149 (43.8%) took metformin, 1 476 (56.2%) were metformin non-users, including 593 (22.6%) used other hypoglycemic agents, and 883 (33.6%) did not use any hypoglycemic agents. Compared with metformin non-users, the Hazard ratio (HR) for ischemic stroke in metformin users was 0.58 (95%CI: 0.36-0.93; P = 0.024). Compared with other hypoglycemic agents, HR was 0.48 (95%CI: 0.28-0.84; P < 0.01); Compared with the group without hypoglycemic agents, HR was 0.65 (95%CI: 0.37-1.13; P=0.13). The association between metformin and ischemic stroke was statistically significant in the patients ≥ 60 years old compared with all the metformin non-users and those who used other hypoglycemic agents (HR: 0.48, 95%CI: 0.25-0.92; P < 0.05). Metformin use was associated with a lower incidence of ischemic stroke in the patients with good glycemic control (0.32, 95%CI: 0.13-0.77; P < 0.05). In the patients with poor glycemic control, and the association was not statistically significant (HR: 0.97, 95%CI: 0.53-1.79; P>0.05). There was an interaction between glycemic control and metformin use on incidence of ischemic stroke (Pinteraction < 0.05). The results of the sensitivity analysis were consistent with the results in the main analysis.
CONCLUSION
Among patients with type 2 diabetic in rural areas of northern China, metformin use was associated with lower incidence of ischemic stroke, especially in patients older than 60 years. There was an interaction between glycemic control and metformin use in the incidence of ischemic stroke.
Humans
;
Male
;
Middle Aged
;
Aged
;
Female
;
Metformin/adverse effects*
;
Diabetes Mellitus, Type 2/drug therapy*
;
Cohort Studies
;
Ischemic Stroke/complications*
;
Prospective Studies
;
Hypoglycemic Agents/adverse effects*
;
Stroke/prevention & control*
;
Retrospective Studies
6.Incidence and risk factors of ischemic stroke in patients with type 2 diabetes among urban workers in Beijing, China.
Jun Hui WU ; Yi Qun WU ; Yao WU ; Zi Jing WANG ; Tao WU ; Xue Ying QIN ; Meng Ying WANG ; Xiao Wen WANG ; Jia Ting WANG ; Yong Hua HU
Journal of Peking University(Health Sciences) 2022;54(2):249-254
OBJECTIVE:
To explore the incidence of ischemic stroke after the onset of type 2 diabetes, and further analyze the risk factors, so as to provide a basis for further research.
METHODS:
The data were obtained from the database of the Beijing Urban Employee Basic Medical Insurance Database. The study used a prospective design to describe the incidence of ischemic stroke in patients with type 2 diabetes. In our study, these patients were followed up for seven years. Multivariate Logistic regression models were used to analyze the risk factors of ischemic stroke in patients with type 2 diabetes.
RESULTS:
A total of 185 813 newly diagnosed type 2 diabetes patients were enrolled, with an average age of (58.5±13.2) years, and 49.0% of them were males. A total of 10 393 patients with newly diagnosed ischemic stroke occurred in 7 years, with a cumulative incidence of 5.6% and an incidence density of 8.1/1 000 person-years. Ischemic stroke occurred in all age groups in patients with type 2 diabetes. The cumulative incidence was 1.5% (95%CI: 1.3%-1.6%) in group ≤44 years old, 3.6% (95%CI: 3.4%-3.7%) in group 45-54 years old, 5.4% (95%CI: 5.2%-5.5%) in group 55-64 years old, and 9.2% (95%CI: 9.0%-9.4%) in group ≥65 years old, and the cumulative incidence increased with age (P < 0.05). Cumulative incidence rate of the males (6.8%, 95%CI: 6.7%-7.0%) was higher than the females (4.4%, 95%CI: 4.3%-4.6%). Among the patients < 80 years old, the cumulative incidence rate of the males was higher than that of the females in all the age groups. In the patients ≥80 years of age, the cumulative incidence was higher in the females (9.2%) than in the males (7.9%). Further analysis revealed that complications, such as coronary heart disease (OR=3.18, 95%CI: 2.72-3.72), heart failure (OR=1.53, 95%CI: 1.32-1.79) and kidney failure (OR=1.45, 95%CI: 1.20-1.75) were associated with ischemic stroke in the patients with type 2 diabetes.
CONCLUSION
The incidence level of ischemic stroke in patients with type 2 diabetes is high. It is necessary to strengthen the management of risk factors in elderly patients, screen the complications of type 2 diabetes as early as possible, and take active preventive and control measures.
Adult
;
Aged
;
Aged, 80 and over
;
Beijing/epidemiology*
;
Diabetes Mellitus, Type 2/epidemiology*
;
Female
;
Humans
;
Incidence
;
Ischemic Stroke
;
Male
;
Middle Aged
;
Prospective Studies
;
Risk Factors
;
Stroke/etiology*
7.Exploring the association between de novo mutations and non-syndromic cleft lip with or without palate based on whole exome sequencing of case-parent trios.
Xi CHEN ; Si Yue WANG ; En Ci XUE ; Xue Heng WANG ; He Xiang PENG ; Meng FAN ; Meng Ying WANG ; Yi Qun WU ; Xue Ying QIN ; Jing LI ; Tao WU ; Hong Ping ZHU ; Jing LI ; Zhi Bo ZHOU ; Da Fang CHEN ; Yong Hua HU
Journal of Peking University(Health Sciences) 2022;54(3):387-393
OBJECTIVE:
To explore the association between de novo mutations (DNM) and non-syndromic cleft lip with or without palate (NSCL/P) using case-parent trio design.
METHODS:
Whole-exome sequencing was conducted for twenty-two NSCL/P trios and Genome Analysis ToolKit (GATK) was used to identify DNM by comparing the alleles of the cases and their parents. Information of predictable functions was annotated to the locus with SnpEff. Enrichment analysis for DNM was conducted to test the difference between the actual number and the expected number of DNM, and to explore whether there were genes with more DNM than expected. NSCL/P-related genes indicated by previous studies with solid evidence were selected by literature reviewing. Protein-protein interactions analysis was conducted among the genes with protein-altering DNM and NSCL/P-related genes. R package "denovolyzeR" was used for the enrichment analysis (Bonferroni correction: P=0.05/n, n is the number of genes in the whole genome range). Protein-protein interactions among genes with DNM and genes with solid evidence on the risk factors of NSCL/P were predicted depending on the information provided by STRING database.
RESULTS:
A total of 339 908 SNPs were qualified for the subsequent analysis after quality control. The number of high confident DNM identified by GATK was 345. Among those DNM, forty-four DNM were missense mutations, one DNM was nonsense mutation, two DNM were splicing site mutations, twenty DNM were synonymous mutations and others were located in intron or intergenic regions. The results of enrichment analysis showed that the number of protein-altering DNM on the exome regions was larger than expected (P < 0.05), and five genes (KRTCAP2, HMCN2, ANKRD36C, ADGRL2 and DIPK2A) had more DNM than expected (P < 0.05/(2×19 618)). Protein-protein interaction analysis was conducted among forty-six genes with protein-altering DNM and thirteen genes associated with NSCL/P selected by literature reviewing. Six pairs of interactions occurred between the genes with DNM and known NSCL/P-related genes. The score measuring the confidence level of the predicted interaction between RGPD4 and SUMO1 was 0.868, which was higher than the scores for other pairs of genes.
CONCLUSION
Our study provided novel insights into the development of NSCL/P and demonstrated that functional analyses of genes carrying DNM were warranted to understand the genetic architecture of complex diseases.
Asians
;
Case-Control Studies
;
Cleft Lip/genetics*
;
Cleft Palate/genetics*
;
Genetic Predisposition to Disease
;
Genome-Wide Association Study
;
Genotype
;
Humans
;
Mutation
;
Parents
;
Polymorphism, Single Nucleotide
;
Whole Exome Sequencing
8.Family-based association tests for rare variants.
Xi CHEN ; Si Yue WANG ; En Ci XUE ; Xue Heng WANG ; He Xiang PENG ; Meng FAN ; Meng Ying WANG ; Yi Qun WU ; Xue Ying QIN ; Jin LI ; Tao WU ; Hong Ping ZHU ; Jing LI ; Zhi Bo ZHOU ; Da Fang CHEN ; Yonghua HU
Chinese Journal of Epidemiology 2022;43(9):1497-1502
Next-generation sequencing has revolutionized family-based association tests for rare variants. As the lower power of genome wide association study for detecting casual rare variants, methods aggregating effects of multiple variants have been proposed, such as burden tests and variance component tests. This paper summarizes the methods of rare variants association test that can be applied for family data, introduces their principles, characteristics and applicable conditions and discusses the shortcomings and the improvement of the present methods.
Computer Simulation
;
Family Relations
;
Genetic Association Studies
;
Genetic Variation
;
Genome-Wide Association Study/methods*
;
Humans
10.A multi-center retrospective study of perioperative chemotherapy for gastric cancer based on real-world data.
Xue Wei DING ; Zhi Chao ZHENG ; Qun ZHAO ; Gang ZHAI ; Han LIANG ; Xin WU ; Zheng Gang ZHU ; Hai Jiang WANG ; Qing Si HE ; Xian Li HE ; Yi An DU ; Lu Chuan CHEN ; Ya Wei HUA ; Chang Ming HUANG ; Ying Wei XUE ; Ye ZHOU ; Yan Bing ZHOU ; Dan WU ; Xue Dong FANG ; You Guo DAI ; Hong Wei ZHANG ; Jia Qing CAO ; Le Ping LI ; Jie CHAI ; Kai Xiong TAO ; Guo Li LI ; Zhi Gang JIE ; Jie GE ; Zhong Fa XU ; Wen Bin ZHANG ; Qi Yun LI ; Ping ZHAO ; Zhi Qiang MA ; Zhi Long YAN ; Guo Liang ZHENG ; Yang YAN ; Xiao Long TANG ; Xiang ZHOU
Chinese Journal of Gastrointestinal Surgery 2021;24(5):403-412
Objective: To explore the effect of perioperative chemotherapy on the prognosis of gastric cancer patients under real-world condition. Methods: A retrospective cohort study was carried out. Real world data of gastric cancer patients receiving perioperative chemotherapy and surgery + adjuvant chemotherapy in 33 domestic hospitals from January 1, 2014 to January 31, 2016 were collected. Inclusion criteria: (1) gastric adenocarcinoma was confirmed by histopathology, and clinical stage was cT2-4aN0-3M0 (AJCC 8th edition); (2) D2 radical gastric cancer surgery was performed; (3) at least one cycle of neoadjuvant chemotherapy (NAC) was completed; (4) at least 4 cycles of adjuvant chemotherapy (AC) [SOX (S-1+oxaliplatin) or CapeOX (capecitabine + oxaliplatin)] were completed. Exclusion criteria: (1) complicated with other malignant tumors; (2) radiotherapy received; (3) patients with incomplete data. The enrolled patients who received neoadjuvant chemotherapy and adjuvant chemotherapy were included in the perioperative chemotherapy group, and those who received only postoperative adjuvant chemotherapy were included in the surgery + adjuvant chemotherapy group. Propensity score matching (PSM) method was used to control selection bias. The primary outcome were overall survival (OS) and progression-free survival (PFS) after PSM. OS was defined as the time from the first neoadjuvant chemotherapy (operation + adjuvant chemotherapy group: from the date of operation) to the last effective follow-up or death. PFS was defined as the time from the first neoadjuvant chemotherapy (operation + adjuvant chemotherapy group: from the date of operation) to the first imaging diagnosis of tumor progression or death. The Kaplan-Meier method was used to estimate the survival rate, and the Cox proportional hazards model was used to evaluate the independent effect of perioperative chemo therapy on OS and PFS. Results: 2 045 cases were included, including 1 293 cases in the surgery+adjuvant chemotherapy group and 752 cases in the perioperative chemotherapy group. After PSM, 492 pairs were included in the analysis. There were no statistically significant differences in gender, age, body mass index, tumor stage before treatment, and tumor location between the two groups (all P>0.05). Compared with the surgery + adjuvant chemotherapy group, patients in the perioperative chemotherapy group had higher proportion of total gastrectomy (χ(2)=40.526, P<0.001), smaller maximum tumor diameter (t=3.969, P<0.001), less number of metastatic lymph nodes (t=1.343, P<0.001), lower ratio of vessel invasion (χ(2)=11.897, P=0.001) and nerve invasion (χ(2)=12.338, P<0.001). In the perioperative chemotherapy group and surgery + adjuvant chemotherapy group, 24 cases (4.9%) and 17 cases (3.4%) developed postoperative complications, respectively, and no significant difference was found between two groups (χ(2)=0.815, P=0.367). The median OS of the perioperative chemotherapy group was longer than that of the surgery + adjuvant chemotherapy group (65 months vs. 45 months, HR: 0.74, 95% CI: 0.62-0.89, P=0.001); the median PFS of the perioperative chemotherapy group was also longer than that of the surgery+adjuvant chemotherapy group (56 months vs. 36 months, HR=0.72, 95% CI:0.61-0.85, P<0.001). The forest plot results of subgroup analysis showed that both men and women could benefit from perioperative chemotherapy (all P<0.05); patients over 45 years of age (P<0.05) and with normal body mass (P<0.01) could benefit significantly; patients with cTNM stage II and III presented a trend of benefit or could benefit significantly (P<0.05); patients with signet ring cell carcinoma benefited little (P>0.05); tumors in the gastric body and gastric antrum benefited more significantly (P<0.05). Conclusion: Perioperative chemotherapy can improve the prognosis of gastric cancer patients.
Chemotherapy, Adjuvant
;
Female
;
Gastrectomy
;
Humans
;
Male
;
Neoadjuvant Therapy
;
Neoplasm Staging
;
Prognosis
;
Retrospective Studies
;
Stomach Neoplasms/surgery*

Result Analysis
Print
Save
E-mail