1.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy.
2.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
3.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
4.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
5.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
6.The number of FOXP3+regulatory T cells (Tregs) decreased and transformed into RORγt+FOXP3+Tregs in lung tissues of mice with bronchopulmonary dysplasia.
Langyue HE ; Hongyan LU ; Ying ZHU ; Jianfeng JIANG ; Huimin JU ; Yu QIAO ; Shanjie WEI
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):7-12
Objective To explore the phenotypic conversion of regulatory T cells (Tregs) in the lungs of mice with bronchopulmonary dysplasia (BPD)-affected mice. Methods A total of 20 newborn C57BL/6 mice were divided into air group and hyperoxia group, with 10 mice in each group. The BPD model was established by exposing the newborn mice to hyperoxia. Lung tissues from five mice in each group were collected on postnatal days 7 and 14, respectively. Histopathological changes of the lung tissues was detected by HE staining. The expression level of surfactant protein C (SP-C) in the lung tissues was examined by Western blot analysis. Flow cytometry was performed to assess the proportion of FOXP3+ Tregs and RORγt+FOXP3+ Tregs in CD4+ lymphocytes. The concentrations of interleukin-17A (IL-17A) and IL-6 in lung homogenate were measured by using ELISA. Spearman correlation analysis was used to analyze the correlation between FOXP3+Treg and the expression of SP-C and the correlation between RORγt+FOXP3+ Tregs and the content of IL-17A and IL-6. Results The hyperoxia group exhibited significantly decreased levels of SP-C and radical alveolar counts in comparison to the control group. The proportion of FOXP3+Tregs was reduced and that of RORγt+FOXP3+Tregs was increased. IL-17A and IL-6 concentrations were significantly increased. SP-C was positively correlated with the expression level of RORγt+FOXP3+ Tregs. RORγt+FOXP3+ Tregs and IL-17A and IL-6 concentrations were also positively correlated. Conclusion The number of FOXP3+ Tregs in lung tissue of BPD mice is decreased and converted to RORγt+ FOXP3+ Tregs, which may be involved in hyperoxy-induced lung injury.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Bronchopulmonary Dysplasia
;
T-Lymphocytes, Regulatory
;
Interleukin-17
;
Nuclear Receptor Subfamily 1, Group F, Member 3
;
Hyperoxia
;
Interleukin-6
;
Forkhead Transcription Factors
;
Lung
7. Research progress of neuronal injury mediated by microglial activation and depression
Ying HE ; Man-Shu ZOU ; Yu-Hong WANG ; Yuan-Shan HAN ; Man-Shu ZOU ; Yuan-Shan HAN ; Yu-Hong WANG
Chinese Pharmacological Bulletin 2024;40(1):12-15
Depression is a common neurological disorder with high incidence, high recurrence and high disability, but its pathogenesis is unclear. In recent years, the protective and attacking effects of glial cells on neurons have become the frontier of neurological disease research. Neuronal injury caused by abnormal activation of microglia (MG) plays an important role in the pathogenesis of depression. In this paper, through literature retrieval by GeenMedical and CNKI, the relevant pathways and key targets of MG activation in depression are summarized so as to provide a theoretical basis for further clinical research.
8.Development of an in vitro screening method for idiosyncratic hepatotoxic components in traditional Chinese medicine: a case study with Epimedii Folium and Psoraleae Fructus
Ying-ying LI ; Meng-meng LIN ; Bo CAO ; Ying LI ; Jing XU ; Xiao-he XIAO ; Guo-hui LI ; Chun-yu LI
Acta Pharmaceutica Sinica 2024;59(3):621-632
Idiosyncratic drug-induced liver injury (IDILI) has long posed a challenging and pivotal concern in pharmaceutical research. The complex composition of traditional Chinese medicine (TCM) has introduced a bottleneck in current research, hindering the elucidation of the component basis associated with IDILI in TCM. Using
9.Forensic Identification and Evaluation of 25 Obstetric Brachial Plexus Palsy Medical Damage Cases
Yong YU ; Ying-Jie WANG ; Yun-Fei JIA ; Bao-Jing HUANG ; Song-Yue HE ; Chuan-Chuan LIU
Journal of Forensic Medicine 2024;40(1):43-49
Objective To analyze the high risk factors of obstetric brachial plexus palsy(OBPP),and to explore how to evaluate the relationship between fault medical behavior and OBPP in the process of medical damage forensic identification.Methods A retrospective analysis was carried out on 25 cases of medical damage liability disputes related to OBPP from 2017 to 2021 in Beijing Fayuan Judicial Science Evidence Appraisal Center.The shortcomings of hospitals in birth weight assessment,delivery mode selection,labor process observation and shoulder dystocia management,and the causal relation-ship between them and the damage consequences of the children were summarized.Results Fault medi-cal behavior was assessed as the primary cause in 2 cases,equal cause in 10 cases,secondary cause in 8 cases,minor cause in 1 case,no causal relationship in 1 case,and unclear causal force in 3 cases.Conclusion In the process of forensic identification of OBPP,whether medical behaviors fulfill diagno-sis and treatment obligations should be objectively analyzed from the aspects of prenatal evaluation,de-livery mode notification,standardized use of oxytocin,standard operation of shoulder dystocia,etc.Meanwhile,it is necessary to fully consider the objective risk of different risk factors and the diffi-culty of injury prevention,and comprehensively evaluate the causal force of fault medical behavior in the damage consequences.
10.Hydrogen-rich saline treated neuropathic pain in rats by increasing autophagy
Ying HE ; Guanghua ZHANG ; Lidong TIAN ; Yonghao YU
Tianjin Medical Journal 2024;52(3):261-265
Objective To evaluate the role of autophagy in the treatment of neuropathic pain(NP)with hydrogen-rich saline.Methods Forty adult male Sprague-Dawley rats with successful intubation were randomly divided into 5 groups(n= 8)using a random number table:the sham operation group(group S),the neuropathic pain group(group C),the hydrogen-rich saline group(group H),the autophagy inhibitor group(group M)and the hydrogen-rich saline + autophagy inhibitor group(group HM).There were 8 rats in each group.The NP model was established by chronic constriction of the sciatic nerve(CCI)in rats.The autophagy inhibitor 3-methyladenine(3-MA)was intraperitoneally injected with 30μg/kg in the group M and the group HM.The hydrogen-rich saline(0.6 mmol/L)was intraperitoneally injected with 10 mL/kg in the group H and the group HM.The other groups were intraperitoneally injected with the same amount of normal saline twice a day for 7 consecutive days.Paw withdrawal threshold to mechanical stimulation(MWT)and paw withdrawal latency to thermal stimulation(TWL)were measured at 1 day before and 1,3,5,7 and 14 days after modeling(T0-T5).After the last measurement of pain threshold,the L4-L6 segment of spinal cord was removed for determination of the expression of autophagy-related proteins microtubule-associated protein light chain 3(LC3)Ⅱ,Beclin-1 and p62 proteins by Western blot assay.The expression levels of superoxide dismutase(SOD)and malondialdehyde(MDA)in spinal cord tissue were detected.Results Compared with the group S,MWT and TWL were decreased in the group C at T2-5,the expression levels of LC3 Ⅱ,Beclin-1 and p62 were increased,SOD activity was decreased,and MDA content was increased at T5(P<0.05).Compared with the group C,MWT and TWL were increased in the group H at T2-5,LC3 Ⅱ and Beclin-1 protein expression levels were increased,p62 protein expression levels were decreased,SOD activity was increased,and MDA content was decreased at T5(P<0.05).MWT and TWL were decreased in the group M at T2-5,LC3 Ⅱ and Beclin-1 protein expression levels were decreased,p62 protein expression levels were increased,SOD activity was decreased,and MDA content was increased at T5(P<0.05).Compared with the group M,MWT and TWL were increased in the group HM at T2-5,LC3 Ⅱ and Beclin-1 protein expression levels were increased,p62 protein expression levels were decreased,SOD activity was increased,and MDA content was decreased at T5(P<0.05).Conclusion Hydrogen-rich saline can alleviate neuropathic pain and inhibit oxidative stress in spinal cord in rats,and the mechanism may be related to the increase of autophagy.

Result Analysis
Print
Save
E-mail