1.Study on secondary metabolites of Penicillium expansum  GY618 and their tyrosinase inhibitory activities
		                			
		                			Fei-yu YIN ; Sheng LIANG ; Qian-heng ZHU ; Feng-hua YUAN ; Hao HUANG ; Hui-ling WEN
Acta Pharmaceutica Sinica 2025;60(2):427-433
		                        		
		                        			
		                        			 Twelve compounds were isolated from the rice fermentation extracts of 
		                        		
		                        	
2.Protective Effect of Tongluo Baoshen Prescription-containing Serum on Lipopolysaccharide-induced Podocyte Injury of Rats
Yongfang LIU ; Tiantian YIN ; Huiyang LIU ; Rui HUANG ; Zhiying FENG ; Li ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):139-148
		                        		
		                        			
		                        			ObjectiveTo observe the effects of Tongluo Baoshen prescription (TLBS)-containing serum on the rat podocyte injury induced by lipopolysaccharide (LPS) and explore the potential mechanisms. MethodsSD rats were used to prepare the blank serum, losartan potassium-containing serum, and low-, medium-, and high-dose TLBS-containing sera. Rat podocytes were cultured in vitro, and the effects of drug-containing sera on podocyte viability were detected by the cell counting kit-8 (CKK-8) method. The optimal intervention volume fraction of drug-containing sera and the optimal concentration of LPS for inducing the podocyte injury were determined. Rat podocytes were grouped as follows: normal control (NC, 10% blank serum), model control (MC, 20.00 mg·L-1 LPS+10% black serum), losartan potassium (LP, 20.00 mg·L-1 LPS+10% losartan potassium-containing serum), low-dose TLBS (TLBS-L, 20.00 mg·L-1 LPS+10% low-dose TLBS-containing serum), medium-dose TLBS (TLBS-M, 20.00 mg·L-1 LPS+10% medium-dose TLBS-containing serum), and high-dose TLBS (TLBS-H, 20.00 mg·L-1 LPS+10% high-dose TLBS-containing serum), and the interventions lasted for 48 h. The ultrastructure of podocytes was observed under a transmission electron microscope. The podocyte apoptosis was detected by the terminal deoxynucleoitidyl transferase mediated nick-end labeling (TUNEL) kit. Immunofluorescence was used to detect the expression of gasdermin D N-terminal fragment (GSDMD-NT) in podocytes. The mRNA and protein levels of G protein-coupled receptor family C group 5 member B (GPRC5B), nuclear factor-κB (NF-κB) p50, NF-κB p52, NF-κB p65, Rel B, c-Rel, NOD-like receptor protein 3 (NLRP3), cysteinyl aspartate-specific protease-1 (Caspase-1), GSDMD-NT, interleukin (IL)-1β, IL-18, nephrin, integrin α3, and integrin β1 in podocytes were determined by real-time quaritiative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultsCompared with the NC group, the MC group showed reduced podocyte protrusions and organelles, segmental missing of cell membranes, increased and swollen mitochondria, irregular nuclear membranes, light chromatin, increased TUNEL fluorescence-positive nuclei (P<0.01), obviously enhanced fluorescence intensity of GSDMD-NT, up-regulated mRNA and protein levels of GPRC5B, NF-κB p50, NF-κB p52, NF-κB p65, Rel B, c-Rel, NLRP3, caspase-1, GSDMD-NT, IL-1β, and IL-18 (P<0.01), and down-regulated mRNA and protein levels of nephrin, integrin α3, and integrin β1 (P<0.01) in podocytes. Compared with the MC group, the LP, TLBS-M, and TLBS-H groups showed improved ultrastructure of podocytes with increased protrusions, intact cell membranes, reduced organelles, and alleviated mitochondrial swelling, decreased TUNEL fluorescence-positive nuclei (P<0.01), weakened fluorescence intensity of GSDMD-NT, down-regulated mRNA and protein levels of GPRC5B, NF-κB p50, NF-κB p52, NF-κB p65, Rel B, c-Rel, NLRP3, caspase-1, GSDMD-NT, IL-1β, and IL-18 (P<0.01), and up-regulated mRNA and protein levels of nephrin, integrin α3, and integrin β1 (P<0.05, P<0.01). Moreover, the changes above were the most obvious in the TLBS-H group. ConclusionThe TLBS-containing serum can regulate the GPRC5B/NF-κB/NLRP3 pathway to inhibit pyroptosis, thereby ameliorating the podocyte injury induced by LPS. 
		                        		
		                        		
		                        		
		                        	
3.Protective Effects of Danmu Extract Syrup on Acute Lung Injury Induced by Lipopolysaccharide in Mice through Endothelial Barrier Repair.
Han XU ; Si-Cong XU ; Li-Yan LI ; Yu-Huang WU ; Yin-Feng TAN ; Long CHEN ; Pei LIU ; Chang-Fu LIANG ; Xiao-Ning HE ; Yong-Hui LI
Chinese journal of integrative medicine 2024;30(3):243-250
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effects of Danmu Extract Syrup (DMS) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the mechanism.
		                        		
		                        			METHODS:
		                        			Seventy-two male Balb/C mice were randomly divided into 6 groups according to a random number table (n=12), including control (normal saline), LPS (5 mg/kg), LPS+DMS 2.5 mL/kg, LPS+DMS 5 mL/kg, LPS+DMS 10 mL/kg, and LPS+Dexamethasone (DXM, 5 mg/kg) groups. After pretreatment with DMS and DXM, the ALI mice model was induced by LPS, and the bronchoalveolar lavage fluid (BALF) were collected to determine protein concentration, cell counts and inflammatory cytokines. The lung tissues of mice were stained with hematoxylin-eosin, and the wet/dry weight ratio (W/D) of lung tissue was calculated. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1 β in BALF of mice were detected by enzyme linked immunosorbent assay. The expression levels of Claudin-5, vascular endothelial (VE)-cadherin, vascular endothelial growth factor (VEGF), phospho-protein kinase B (p-Akt) and Akt were detected by Western blot analysis.
		                        		
		                        			RESULTS:
		                        			DMS pre-treatment significantly ameliorated lung histopathological changes. Compared with the LPS group, the W/D ratio and protein contents in BALF were obviously reduced after DMS pretreatment (P<0.05 or P<0.01). The number of cells in BALF and myeloperoxidase (MPO) activity decreased significantly after DMS pretreatment (P<0.05 or P<0.01). DMS pre-treatment decreased the levels of TNF-α, IL-6 and IL-1 β (P<0.01). Meanwhile, DMS activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway and reversed the expressions of Claudin-5, VE-cadherin and VEGF (P<0.01).
		                        		
		                        			CONCLUSIONS
		                        			DMS attenuated LPS-induced ALI in mice through repairing endothelial barrier. It might be a potential therapeutic drug for LPS-induced lung injury.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Interleukin-1beta/metabolism*
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Claudin-5/metabolism*
		                        			;
		                        		
		                        			Acute Lung Injury/chemically induced*
		                        			;
		                        		
		                        			Lung/pathology*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			
		                        		
		                        	
4.Role of NLRP3 Inflammasome in IgA Nephropathy and Chinese Medicine Intervention: A Review
Yongfang LIU ; Li ZHOU ; Huiyang LIU ; Rui HUANG ; Zhiying FENG ; Tiantian YIN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(6):269-279
		                        		
		                        			
		                        			IgA nephropathy is recognized as the most common primary glomerular disease, with up to 20%-40% of patients developing end-stage kidney disease within 20 years of onset. The deposition of IgA1-containing immune complexes targeting glycosylation defects in the mesangial region and the subsequent inflammation caused by T lymphocyte activation are considered as the main causes of IgA nephropathy, and innate immunity is also involved in the pathogenesis. Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) is a newly discovered pattern recognition receptor expressed in renal intrinsic cells such as renal tubular epithelial cells, mesangial cells, and podocytes. Activated by external stimuli, NLRP3 can form NLRP3 inflammasomes with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). The NLRP3 inflammasome can activate cysteine aspartate-specific protease-1 (Caspase-1), causing the maturation and release of interleukin-18 (IL-18) and interleukin-1β (IL-1β) involved in inflammation. Increasing evidence has suggested that NLRP3 inflammasomes are involved in the pathogenesis and progression of IgA nephropathy and associated with the damage of renal intrinsic cells such as podocytes, mesangial cells, endothelial cells, and renal tubular epithelial cells. Chinese medicine can regulate inflammatory cytokines and their signaling pathways by acting on NLRP3 inflammasomes and related molecules, exerting therapeutic effects on IgA nephropathy. This article introduces the role of NLRP3 inflammasomes in IgA nephropathy and reviews the clinical and experimental research progress of Chinese medicine intervention in IgA nephropathy via NLRP3 inflammasomes, aiming to provide a reference for further research and application of Chinese medicine intervention in the NLRP3 inflammasome as a new therapeutic target. 
		                        		
		                        		
		                        		
		                        	
5.Effects of thinned anterolateral thigh perforator flaps combined with finger splitting and webplasty in sequential treatment of degloving destructive wound of total hand
Shanqing YIN ; Feng ZHU ; Yaopeng HUANG ; Jiadong PAN ; Dongchao XIAO ; Linhai LIU ; Xueyuan LI ; Xin WANG
Chinese Journal of Burns 2024;40(11):1052-1058
		                        		
		                        			
		                        			Objective:To investigate the effects of thinned anterolateral thigh perforator flaps combined with finger splitting and webplasty in sequential treatment of degloving destructive wound of total hand.Methods:This study was a retrospective observational study. From January 2012 to January 2023, a total of 15 cases who met the inclusion criteria with degloving destructive wound of total hand were admitted to Ningbo No.6 Hospital, including 10 males and 5 females, aged 17-75 years. The wounds were all combined with exposed bones or tendon. Emergency debridement and vacuum sealing drainage were performed in all cases before flap transplantation in stage Ⅰ. After thorough debridement, the wound area was 11.0 cm×3.0 cm-23.0 cm×13.5 cm. One or both anterolateral thigh perforator flaps with size of 12.5 cm×5.0 cm-25.0 cm×15.5 cm were designed, cut, and thinned to repair the skin and soft tissue defects of the hand. The donor site was sutured directly or repaired with medium-thickness skin graft from the opposite thigh. As needed, the flap was reconstructed by finger splitting and webplasty once or more times every 3 months after stage Ⅰoperation. The survival and complications of flap and wound healing at the donor site were observed after stage Ⅰoperation. The appearance of flap, two-point discrimination distance, and hand function were observed during the follow-up. At the final follow-up, the function of the affected hand was evaluated by the trial standards for evaluation of partial function of upper extremity by the Hand Surgery Society of Chinese Medical Association.Results:After the operation of stage Ⅰ, all the flaps of 15 cases of patients survived completely, including 1 case that had arterial crisis of flap but survived completely after exploration and re-anastomosis of blood vessels; all the wounds at the donor site healed. During the follow-up period of 6 to 18 months after stage Ⅰ, the flap was slightly swollen, with a little pigmentation, and the two-point discrimination distance in the finger flap was 8-11 mm. The fingers could complete the basic life actions such as flexion, extension, pinch, and grip. At the final follow-up, 3 cases were excellent, 9 cases were good, and 3 cases were acceptable in function evaluation of the affected hand.Conclusions:For degloving destructive wound of total hand, free transplantation of one or both thinned anterolateral thigh perforator flaps is used for repair in stage Ⅰ, and finger splitting and webplasty are used to reconstruct the flaps in the later stage, which can basically restore the pinch and grip function of the affected hand that is required for daily life, and is worthy of clinical promotion.
		                        		
		                        		
		                        		
		                        	
6.Clinical characteristics of hospitalized children with respiratory syncytial virus infection and risk prediction of severe illness during the post-COVID-19 era in Kunming
Haifeng LIU ; Quanli FENG ; Rongwei HUANG ; Tingyun YUAN ; Mingze SUI ; Peilong LI ; Kai LIU ; Feng LI ; Yin LI ; Li JIANG ; Hongmin FU
Chinese Journal of Pediatrics 2024;62(4):323-330
		                        		
		                        			
		                        			Objective:To compare the epidemiological and clinical characteristics of hospitalized children with respiratory syncytial virus (RSV) infection in Kunming among the pre-and post-COVID-19 era, and to establish a prediction model for severe RSV infection in children during the post-COVID-19 period.Methods:This was a retrospective study. Clinical and laboratory data were collected from 959 children hospitalized with RSV infection in the Department of Pulmonary and Critical Care Medicine at Kunming Children′s Hospital during January to December 2019 and January to December 2023. Patients admitted in 2019 were defined as the pre-COVID-19 group, while those admitted in 2023 were classified as the post-COVID-19 group. Epidemiological and clinical characteristics were compared between the two groups. Subsequently, comparison of the clinical severity among the two groups was performed based on propensity score matching (PSM). Furthermore, the subjects in the post-COVID-19 group were divided into severe and non-severe groups based on clinical severity. Chi-square test and Mann-Whitney U test were used for pairwise comparison between groups, and multivariate Logistic regression was applied for the identification of independent risk factors and construction of the prediction model. The receiver operating characteristic (ROC) curve and calibration curve were employed to evaluate the predictive performance of this model. Results:Among the 959 children hospitalized with RSV infection, there were 555 males and 404 females, with an onset age of 15.4 (7.3, 28.5) months. Of which, there were 331 cases in the pre-COVID-19 group and 628 cases in the post-COVID-19 group. The peak period of RSV hospitalization in the post-COVID-19 group were from May to October 2023, and the monthly number of inpatients for each of these months were as follows: 72 cases (11.5%), 98 cases (15.6%), 128 cases (20.4%), 101 cases (16.1%), 65 cases (10.4%), and 61 cases (9.7%), respectively. After PSM for general data, 267 cases were matched in each group. The proportion of wheezing in the post-COVID-19 group was lower than that in the pre-COVID-19 group (109 cases (40.8%) vs. 161 cases (60.3%), χ2=20.26, P<0.001), while the incidences of fever, tachypnea, seizures, severe case, neutrophil-to-lymphocyte ratio (NLR), C-reactive protein and interleukin-6 levels were all higher than those in the pre-COVID-19 group (146 cases (54.7%) vs. 119 cases (44.6%), 117 cases (43.8%) vs. 89 cases (33.3%), 37 cases (13.9%) vs. 14 cases (5.2%), 69 cases (25.8%) vs. 45 cases (16.9%), 3.6 (1.9, 6.4) vs. 2.3 (1.8, 4.6), 9.9 (7.1, 15.2) vs. 7.8 (4.5, 13.9) mg/L, 20.5 (15.7, 30.4) vs. 17.2 (11.0, 26.9) ng/L, χ2=5.46, 6.36, 11.47, 6.42, Z=4.13, 3.06, 2.96, all P<0.05). There were 252 cases and 107 cases with co-infection in the post-and pre-COVID-19 groups, respectively. The proportion of triple and quadruple infection in the post-COVID-19 group was higher than that in the pre-COVID-19 group (59 cases (23.4%) vs. 13 cases (12.1%), 30 cases (11.9%) vs. 5 cases (4.7%), χ2=5.94, 4.46, both P<0.05). Among the 252 cases with co-infection in post-COVID-19 group, the most prevalent pathogens involving in co-infections, in order, were Mycoplasma pneumoniae 56 cases (22.2%), Influenza A virus 53 cases (21.0%), Rhinovirus 48 cases (19.0%), Parainfluenza virus 35 cases (13.9%), and Adenovirus 28 cases (11.1%).The result of multivariate Logistic regression showed that age ( OR=0.70, 95% CI 0.62-0.78, P<0.001), underlying diseases ( OR=10.03, 95% CI 4.10-24.55, P<0.001), premature birth ( OR=6.78, 95% CI 3.53-13.04, P<0.001), NLR ( OR=1.85, 95% CI 1.09-3.15, P=0.023), and co-infection ( OR=1.28, 95% CI 1.18-1.38, P<0.001) were independently associated with the development of severe RSV infection in the post-COVID-19 group. The ROC curve of the prediction model integrating the above five factors indicated an area under the curve of 0.85 (95% CI 0.80-0.89, P<0.001), with an optimal cutoff of 0.21, a sensitivity of 0.83 and a specificity of 0.80. The calibration curve showed that the predicted probability in this model did not differ significantly from the actual probability ( P=0.319). Conclusions:In the post-COVID-19 era in Kunming, the peak in pediatric hospitalizations for RSV infection was from May to October, with declined incidence of wheezing and increased incidence of fever, tachypnea, seizures, severe cases, and rates of triple and quadruple co-infections. Age, underlying diseases, premature birth, NLR, and co-infection were identified as independent risk factors for severe RSV infection in the post-COVID-19 period. In this study, a risk prediction model for severe pediatric RSV infection was established, which had a good predictive performance.
		                        		
		                        		
		                        		
		                        	
7.Effect of RBM20 and MURC digenic heterozygosity variation on the structure and biological characteristics of myocardial cells
Qiaowei LI ; Yin YUAN ; Wenqing ZHU ; Yanfang YANG ; Feng HUANG
Journal of China Medical University 2024;53(10):882-892,899
		                        		
		                        			
		                        			Objective To investigate the impact of variations in RNA-binding motif protein 20(RBM20)and muscle-restricted coiled-coil(MURC)digenic heterozygosity variation on the structural and biological characteristics of human cardiomyocyte AC 16(an adult left ventricular myocardial cell line).Methods Cardiomyocyte AC 16 cell lines were constructed with control,negative scramble,wild-type,MURC single-gene mutant,RBM20 single-gene mutant,and RBM20 and MURC digenic mutant groups.The localization of RBM20 and MURC in cardiomyocytes,cell area,cytoskeletal arrangement,cytoskeleton-related proteins,cell polarity,and intracellular calcium concentration were observed using Western blotting,immunofluorescence staining,and reverse transcription polymerase chain reaction.Myocardial apoptosis was detected using flow cytometry.Ki-67 staining and wound healing assays were performed to detect cardiomyo-cyte proliferation and migration,respectively.Results Digenic mutations had a more pronounced impact than single-gene mutations in RBM20 or MURC on the structural and biological characteristics of cardiomyocytes,manifested by increased cell area,upregulated mRNA expression of hypertrophy-related genes,such as myosin heavy chain 7 and alpha-actin,increased cytoskeleton disturbance,decreased flu-orescence intensity of cytoskeletal proteins β-tubulin and Vinculin(all P<0.01);increased fluorescence intensity of the polarity protein Part 6(P<0.05);and significantly elevated cardiomyocyte apoptosis rate,decreased proliferative activity,and elevated migration rate and intracellular calcium ion concentration(all P<0.01).Conclusion The digenic heterozygous variation in RBM20 and MURC may induce changes in the morphological structure and biological characteristics of myocardial cells,including increased cell area,cytoskeleton dis-turbance,cell polarity,increased apoptosis rate and mobility,decreased cell proliferation activity,and calcium processing ability.
		                        		
		                        		
		                        		
		                        	
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
		                        		
		                        			
		                        			Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
		                        		
		                        		
		                        		
		                        	
9.Tendon-bone interface mechanomedicine and its value in the clinical diagnosis and treatment of tendon-bone interface injuries
Zhanhai YIN ; Qiaonan LIU ; Yuanbo JIA ; Xiaokang LI ; Guoyou HUANG ; Feng XU
Chinese Journal of Trauma 2024;40(10):929-937
		                        		
		                        			
		                        			The tendon-bone interface is where the tendons or ligaments are connected with the bones. A spectrum of injuries may happen to the "soft-to-hard" tissue interface, including those to the rotator cuff-bone and cruciate ligament-bone interfaces, which are often precipitated by a combination of degenerative changes on the tendon-bone interface and acute or chronic injuries, thus severely impairing the patients′ motor function. In recent years, with the deepening of the interdisciplinary researches in biomechanics, mechanobiology, and sports medicine, the role of mechanical factors in the repair of tendon-bone interface injuries has attracted more and more attention and becomes a focus of the edge-cutting researches on the tendon-bone interface injuries. To this end, the authors proposed the concept of "tendon-bone interface mechanomedicine" based on an overview of the relevant researches at home and abroad. The mechanical properties of the tendon-bone interface and the effects of mechanical stimuli on its biological behavior were elucidated from the four aspects: biomechanics, mechanobiology, mechanodiagnostics, and mechanotherapy, aiming to explore the diagnostic and therapeutic strategies for tendon-bone interface injuries from the angle of mechanics and provide new perspectives and methodologies for the field of tendon-bone interface injury repair.
		                        		
		                        		
		                        		
		                        	
10.Clinical guidelines for the diagnosis and treatment of osteoporotic thoracolumbar vertebral fracture with kyphotic deformity in the elderly (version 2024)
Jian CHEN ; Qingqing LI ; Jun GU ; Zhiyi HU ; Shujie ZHAO ; Zhenfei HUANG ; Tao JIANG ; Wei ZHOU ; Xiaojian CAO ; Yongxin REN ; Weihua CAI ; Lipeng YU ; Tao SUI ; Qian WANG ; Pengyu TANG ; Mengyuan WU ; Weihu MA ; Xuhua LU ; Hongjian LIU ; Zhongmin ZHANG ; Xiaozhong ZHOU ; Baorong HE ; Kainan LI ; Tengbo YU ; Xiaodong GUO ; Yongxiang WANG ; Yong HAI ; Jiangang SHI ; Baoshan XU ; Weishi LI ; Jinglong YAN ; Guangzhi NING ; Yongfei GUO ; Zhijun QIAO ; Feng ZHANG ; Fubing WANG ; Fuyang CHEN ; Yan JIA ; Xiaohua ZHOU ; Yuhui PENG ; Jin FAN ; Guoyong YIN
Chinese Journal of Trauma 2024;40(11):961-973
		                        		
		                        			
		                        			The incidence of osteoporotic thoracolumbar vertebral fracture (OTLVF) in the elderly is gradually increasing. The kyphotic deformity caused by various factors has become an important characteristic of OTLVF and has received increasing attention. Its clinical manifestations include pain, delayed nerve damage, sagittal imbalance, etc. Currently, the definition and diagnosis of OTLVF with kyphotic deformity in the elderly are still unclear. Although there are many treatment options, they are controversial. Existing guidelines or consensuses pay little attention to this type of fracture with kyphotic deformity. To this end, the Lumbar Education Working Group of the Spine Branch of the Chinese Medicine Education Association and Editorial Committee of Chinese Journal of Trauma organized the experts in the relevant fields to jointly develop Clinical guidelines for the diagnosis and treatment of osteoporotic thoracolumbar vertebral fractures with kyphotic deformity in the elderly ( version 2024), based on evidence-based medical advancements and the principles of scientificity, practicality, and advanced nature, which provided 18 recommendations to standardize the clinical diagnosis and treatment.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail