1.Danggui Shaoyaosan Combined with Yinchenhaotang Regulates Lipid Metabolism to Ameliorate Type 2 Diabetes Mellitus Complicated with Metabolic Dysfunction-associated Steatotic Liver Disease
Yilin XU ; Liu LI ; Junju ZOU ; Hong LI ; Rong YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):38-47
ObjectiveTo explore the regulatory effect and mechanism of Danggui Shaoyaosan combined with Yinchenhaotang on lipid metabolism in the mouse model of type 2 diabetes mellitus (T2DM) complicated with metabolic dysfunction-associated steatotic liver disease (MASLD) based on network pharmacology and animal experiments. MethodsTwenty-four MKR transgenic diabetic mice were randomly allocated into 4 groups: Model, low-dose (12.6 g·kg-1) Chinese medicine (concentrated decoction of Danggui Shaoyaosan combined with Yinchenhaotang), high-dose (25.2 g·kg-1) Chinese medicine, and Western medicine (metformin, 0.065 g·kg-1). Six FVB mice were used as the normal group. All groups were treated for 6 consecutive weeks. The mice in the drug treatment groups were administrated with corresponding agents by gavage, and those in the normal group and model group received the same volume of distilled water. Fasting blood glucose, body weight, liver weight, glucose tolerance, liver function indicators, blood lipid levels, and pathological changes in the liver were evaluated for each group. Network pharmacology was employed to analyze the targets and pathways of Danggui Shaoyaosan combined with Yinchenhaotang in the treatment of T2DM complicated with MASLD. Molecular biological techniques were used to verify the enriched key targets. ResultsCompared with the model group, each treatment group showed reduced fasting blood glucose, body weight, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and liver weight (P<0.01). The high-dose Chinese medicine group was superior to the low-dose group in reducing low-density lipoprotein (LDL), increasing high-density lipoprotein (HDL), and recovering glucose tolerance (AUC) and ALT (P<0.05), with the effect similar to that of the Western medicine group. Morphologically, Chinese medicine groups showed reduced lipid accumulation and alleviated pathological damage in the liver tissue, with the high-dose group demonstrating more significant changes. Network pharmacology results showed that Danggui Shaoyaosan combined with Yinchenhaotang may exert therapeutic effects through multiple targets such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), B-cell lymphoma-2 (Bcl-2), MYC oncogene (MYC), and interleukin-1β (IL-1β). Western blot showed that compared with the model group, the treatment groups demonstrated down-regulated protein levels of FAS and ACC (P<0.01) and up-regulated protein levels of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and UCP1 (P<0.01). Compared with the low-dose Chinese medicine group, the high-dose Chinese medicine group exhibited down-regulated protein levels of FAS and ACC and up-regulated protein levels of PGC-1α and UCP1 (P<0.05). ConclusionDanggui Shaoyaosan combined with Yinchenhaotang has the effect of ameliorating T2DM complicated with MASLD and can improve the liver lipid metabolism by up-regulating the protein levels of Fas and ACC and down-regulating the protein levels of PGC-1α and UCP1.
2.Traditional Chinese medicine Pien-Tze-Huang ameliorates LPS-induced sepsis through bile acid-mediated activation of TGR5-STAT3-A20 signalling
Li BEI ; Zhang YONG ; Liu XINYUAN ; Zhang ZIYANG ; Zhuang SHUQING ; Zhong XIAOLI ; Chen WENBO ; Hong YILIN ; Mo PINGLI ; Lin SHUHAI ; Wang SHICONG ; Yu CHUNDONG
Journal of Pharmaceutical Analysis 2024;14(4):601-614
Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is un-known.Here,we reported that PZH attenuated lipopolysaccharide(LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the acti-vation of mitogen-activated protein kinase(MAPK)and nuclear factor-kappa B(NF-κB)signalling.Mechanistically,PZH stimulated signal transducer and activator of transcription 3(STAT3)phosphory-lation to induce the expression of A20,which could inhibit the activation of NF-κB and MAPK signalling.Knockdown of the bile acid(BA)receptor G protein-coupled bile acid receptor 1(TGR5)in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction,as well as the LPS-induced inflammatory response,suggesting that BAs in PZH may mediate its anti-inflammatory effects by acti-vating TGR5.Consistently,deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20,the activation of NF-κB and MAPK signalling,and the production of proinflammatory cytokines,whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines.Overall,our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.
3.Recent advance in clinical trials and animal experiments regarding teratogenic effects of anti-seizure medication
Qiulei HONG ; Yifei DUAN ; Leihao SHA ; Yilin XIA ; Yusha TANG ; Lei CHEN
Chinese Journal of Neuromedicine 2024;23(9):940-946
Pregnant women account for 40% of all epilepsy patients, and the economic burden of pregnant women with epilepsy is 5 times higher than that of non-pregnant patients. Additionally, the rates of stillbirth and congenital malformations in pregnant women with epilepsy are 5 times greater than those in normal pregnant women. Therefore, it is crucial to comprehensively review and summarize the management of pregnant women with epilepsy to reduce the burden of the disease. This study provides a thorough review on teratogenic effects of anti-seizure medications (ASMs) used during pregnancy, and summarizes the effects of ASMs on health of offspring and offers clinical management recommendations for pregnant women with epilepsy, aiming to provide guidance for safe use of medications during pregnancy.
4.Intraperitoneal versus intranasal administration of lipopolysaccharide in causing sepsis severity in a murine model: a preliminary comparison
Yaqing JIAO ; Cindy S. W. TONG ; Lingyun ZHAO ; Yilin ZHANG ; John M. NICHOLLS ; Timothy H. RAINER
Laboratory Animal Research 2024;40(2):280-286
Community-acquired respiratory infection is the commonest cause of sepsis presenting to emergency departments. Yet current experimental animal models simulate peritoneal sepsis with intraperitoneal (I.P.) injection of lipopolysaccharide (LPS) as the predominant route. We aimed to compare the progression of organ injury between I.P. LPS and intranasal (I.N.) LPS in order to establish a better endotoxemia murine model of respiratory sepsis. Eight weeks old male BALB/c mice received LPS-Escherichia coli doses at 0.15, 1, 10, 20, 40 and 100 mg per kg body weight (e.g. LPS-10 is a dose of 10 mg/kg body weight). Disease severity was monitored by a modified Mouse Clinical Assessment Score for Sepsis (M-CASS; range 0–21). A M-CASS score ≥ 10 or a weight reduction of ≥ 20%, was used as a criterion for euthanasia. The primary outcome was the survival rate (either no death or no need for euthanasia). The progression of disease was specified as M-CASS, body weight, blood glucose, histopathological changes to lung, liver, spleen, kidney, brain and heart tissues. Survival rate in I.P. LPS-20 mice was 0% (2/3 died; 1/3 euthanized with M-CASS > 10) at 24 h. Survival rate in all doses of I.N. LPS was 100% (20/20; 3–4 per group) at 96 h. 24 h mean M-CASS post-I.P. LPS-10 was 6.4/21 significantly higher than I.N. LPS-10 of 1.7/21 (Unpaired t test, P < 0.05). Organ injury was present at 96 h in the I.P. LPS-10 group: lung (3/3; 100%), spleen (3/3; 100%) and liver (1/3; 33%). At 24 h in the I.P. LPS-20 group, kidney injury was observed in the euthanized mouse. At 96 h in the post-I.N. LPS-20 group, only lung injury was observed in 2/3 (67%) mice (Kruskal-Wallis test with Dunn’s, P < 0.01). At 24 h in the post-I.N. LPS-100 group all (4/4) mice had evidence of lung injury. Variable doses of I.N. LPS in mice produced lung injury but did not produce sepsis. Higher doses of I.P. LPS induced multi-organ injury but not respiratory sepsis. Lethal models of respiratory virus, e.g., influenza A, might provide alternative avenues that can be explored in future research.
5.Atp6i deficient mouse model uncovers transforming growth factor-β1 /Smad2/3 as a key signaling pathway regulating odontoblast differentiation and tooth root formation.
Jue WANG ; Abigail MCVICAR ; Yilin CHEN ; Hong-Wen DENG ; Zhihe ZHAO ; Wei CHEN ; Yi-Ping LI
International Journal of Oral Science 2023;15(1):35-35
The biomolecular mechanisms that regulate tooth root development and odontoblast differentiation are poorly understood. We found that Atp6i deficient mice (Atp6i-/-) arrested tooth root formation, indicated by truncated Hertwig's epithelial root sheath (HERS) progression. Furthermore, Atp6i deficiency significantly reduced the proliferation and differentiation of radicular odontogenic cells responsible for root formation. Atp6i-/- mice had largely decreased expression of odontoblast differentiation marker gene expression profiles (Col1a1, Nfic, Dspp, and Osx) in the alveolar bone. Atp6i-/- mice sample RNA-seq analysis results showed decreased expression levels of odontoblast markers. Additionally, there was a significant reduction in Smad2/3 activation, inhibiting transforming growth factor-β (TGF-β) signaling in Atp6i-/- odontoblasts. Through treating pulp precursor cells with Atp6i-/- or wild-type OC bone resorption-conditioned medium, we found the latter medium to promote odontoblast differentiation, as shown by increased odontoblast differentiation marker genes expression (Nfic, Dspp, Osx, and Runx2). This increased expression was significantly blocked by anti-TGF-β1 antibody neutralization, whereas odontoblast differentiation and Smad2/3 activation were significantly attenuated by Atp6i-/- OC conditioned medium. Importantly, ectopic TGF-β1 partially rescued root development and root dentin deposition of Atp6i-/- mice tooth germs were transplanted under mouse kidney capsules. Collectively, our novel data shows that the prevention of TGF-β1 release from the alveolar bone matrix due to OC dysfunction may lead to osteopetrosis-associated root formation via impaired radicular odontoblast differentiation. As such, this study uncovers TGF-β1 /Smad2/3 as a key signaling pathway regulating odontoblast differentiation and tooth root formation and may contribute to future therapeutic approaches to tooth root regeneration.
Female
;
Animals
;
Mice
;
Transforming Growth Factor beta1
;
Odontoblasts
;
Culture Media, Conditioned
;
Cell Differentiation
;
Signal Transduction
;
Disease Models, Animal
;
Tooth Root
6.Embedded 3D printing of porous silicon orbital implants and its surface modification.
Hong ZHAO ; Yilin WANG ; Yanfang WANG ; Haihuan GONG ; Feiyang YINJUN ; Xiaojun CUI ; Jiankai ZHANG ; Wenhua HUANG
Journal of Southern Medical University 2023;43(5):783-792
OBJECTIVE:
To prepare customized porous silicone orbital implants using embedded 3D printing and assess the effect of surface modification on the properties of the implants.
METHODS:
The transparency, fluidity and rheological properties of the supporting media were tested to determine the optimal printing parameters of silicone. The morphological changes of silicone after modification were analyzed by scanning electron microscopy, and the hydrophilicity and hydrophobicity of silicone surface were evaluated by measuring the water contact angle. The compression modulus of porous silicone was measured using compression test. Porcine aortic endothelial cells (PAOECs) were co-cultured with porous silicone scaffolds for 1, 3 and 5 days to test the biocompatibility of silicone. The local inflammatory response to subcutaneous porous silicone implants was evaluated in rats.
RESULTS:
The optimal printing parameters of silicone orbital implants were determined as the following: supporting medium 4% (mass ratio), printing pressure 1.0 bar and printing speed 6 mm/s. Scanning electron microscopy showed that the silicone surface was successfully modified with polydopamine and collagen, which significantly improved hydrophilicity of the silicone surface (P < 0.05) without causing significant changes in the compression modulus (P > 0.05). The modified porous silicone scaffold had no obvious cytotoxicity and obviously promoted adhesion and proliferation of PAOECs (P < 0.05). In rats bearing the subcutaneous implants, no obvious inflammation was observed in the local tissue.
CONCLUSION
Poprous silicone orbital implants with uniform pores can be prepared using embedded 3D printing technology, and surface modification obviously improves hydrophilicity and biocompatibility of the silicone implants for potential clinical application.
Animals
;
Rats
;
Swine
;
Silicon
;
Orbital Implants
;
Endothelial Cells
;
Porosity
;
Silicones
;
Printing, Three-Dimensional
7.Mediating role of psychological capital between occupational stress and depressive symptoms in disease prevention and control personnel
Shengnan LI ; Yilin HONG ; Qiaoyun ZHANG ; Lu DING ; Quanbing XIN ; Yiyang MAO ; Yuepu PU ; Lihong YIN
Journal of Environmental and Occupational Medicine 2022;39(4):419-425
Background Occupational stress and depressive symptoms of disease prevention and control personnel are serious. Objective To investigate the relationship between occupational stress, psychological capital, and depressive symptoms of disease prevention and control personnel, and analyze the potential mediating effect of psychological capital on the relationship between occupational stress and depressive symptoms. Methods From July to September 2020, a cluster random sampling method was used to select 2201 employees from 21 centers for disease control and prevention as study subjects covering all levels of administrative divisions in Jiangsu Province. A total of 2036 valid questionnaires were collected with a recovery rate of 92.5%. The Core Occupational Stress Scale, Patient Health Questionnaire, and Psychological Capital Questionnaire were used to investigate their occupational stress, depressive symptoms, and psychological capital. Stratified regression analysis was used to explore the effects of occupational stress and psychological capital on depressive symptoms. A mediating effect model was used to analyze and verify the potential mediating effect of psychological capital on the relationship between occupational stress and depressive symptoms. Results The total scores in M (P25, P75) of occupational stress, depressive symptoms, and psychological capital in the target population were 42.0 (37.0, 48.0), 8.0 (4.0, 9.0), and 4.6 (4.0, 5.0) respectively. The positive rate of occupational stress was 31.0% (631/2036), and the positive rate of depressive symptoms was 22.0% (448/2036). The dimensional scores of organization and reward, and demand and effort of occupational stress were positively correlated with the total score of depressive symptoms [Spearman correlation coefficients (rs) were 0.371 and 0.269, P<0.05]. The dimensional scores of social support and autonomy of occupational stress and the score of psychological capital were negatively correlated with the total score of depressive symptoms (rs=−0.373, −0.112, −0.494, P<0.05). The organization and reward, and demand and effort had positive effects on depressive symptoms (b=0.188, 0.177, P<0.05), while social support and autonomy had negative effects on depressive symptoms (b=−0.290, −0.078, P<0.05), and associated with a 22.5% increase of explanatory variance. Psychological capital had a negative effect on depressive symptoms (b=−0.368, P<0.05), and associated with an 11.0% increase of explanatory variance. Psychological capital had mediating effects on the associations of social support, organization and reward, and autonomy with depressive symptoms, and the mediating effect values were −0.210 (95%CI: −0.253-−0.171), 0.096 (95%CI: 0.071-0.122), and −0.164 (95%CI: −0.229-−0.103), respectively. The corresponding mediating effect percentages were 40.23%, 26.97%, and 45.56%, respectively. Conclusion Occupational stress of disease prevention and control personnel can directly affect depressive symptoms, but also indirectly through psychological capital. Psychological capital plays a partial mediating role in the associations of social support, organization and reward, and autonomy of occupational stress with depressive symptoms. The occurrence of depressive symptoms can be reduced by decreasing occupational stress and increasing psychological capital.
8.Impact of aortic annular size and valve type on haemodynamics and clinical outcomes after transcatheter aortic valve implantation.
Samuel Ji Quan KOH ; Jonathan YAP ; Yilin JIANG ; Julian Cheong Kiat TAY ; Kevin Kien Hong QUAH ; Nishanth THIAGARAJAN ; Swee Yaw TAN ; Mohammed Rizwan AMANULLAH ; Soo Teik LIM ; Zameer Abdul AZIZ ; Sivaraj GOVINDASAMY ; Victor Tar Toong CHAO ; See Hooi EWE ; Kay Woon HO
Annals of the Academy of Medicine, Singapore 2022;51(10):605-618
INTRODUCTION:
Data on patients with small aortic annuli (SAA) undergoing transcatheter aortic valve implantation (TAVI) are limited. We aim to describe the impact of aortic annular size, particularly SAA and TAVI valve type on valve haemodynamics, durability and clinical outcomes.
METHOD:
All patients in National Heart Centre Singapore who underwent transfemoral TAVI for severe symptomatic native aortic stenosis from July 2012 to December 2019 were included. Outcome measures include valve haemodynamics, prosthesis-patient mismatch (PPM), structural valve degeneration (SVD) and mortality.
RESULTS:
A total of 244 patients were included. The mean Society of Thoracic Surgeons score was 6.22±6.08, with 52.5% patients with small aortic annulus (<23mm), 33.2% patients with medium aortic annulus (23-26mm) and 14.3% patients with large aortic annulus (>26mm). There were more patients with self-expanding valve (SEV) (65.2%) versus balloon-expandable valve (BEV) (34.8%). There were no significant differences in indexed aortic valve area (iAVA), mean pressure gradient (MPG), PPM, SVD or mortality across all aortic annular sizes. However, specific to the SAA group, patients with SEV had larger iAVA (SEV 1.19±0.35cm2/m2 vs BEV 0.88±0.15cm2/m2, P<0.01) and lower MPG (SEV 9.25±4.88 mmHg vs BEV 14.17±4.75 mmHg, P<0.01) at 1 year, without differences in PPM or mortality. Aortic annular size, TAVI valve type and PPM did not predict overall mortality up to 7 years. There was no significant difference in SVD between aortic annular sizes up to 5 years.
CONCLUSION
Valve haemodynamics and durability were similar across the different aortic annular sizes. In the SAA group, SEV had better haemodynamics than BEV at 1 year, but no differences in PPM or mortality. There were no significant differences in mortality between aortic annular sizes, TAVI valve types or PPM.
Humans
;
Transcatheter Aortic Valve Replacement
;
Heart Valve Prosthesis
;
Aortic Valve Stenosis/surgery*
;
Aortic Valve/surgery*
;
Prosthesis Design
;
Postoperative Complications/surgery*
;
Treatment Outcome
;
Hemodynamics
9.Molecular glues modulate protein functions by inducing protein aggregation: A promising therapeutic strategy of small molecules for disease treatment.
Hongyu WU ; Hong YAO ; Chen HE ; Yilin JIA ; Zheying ZHU ; Shengtao XU ; Dahong LI ; Jinyi XU
Acta Pharmaceutica Sinica B 2022;12(9):3548-3566
Molecular glues can specifically induce aggregation between two or more proteins to modulate biological functions. In recent years, molecular glues have been widely used as protein degraders. In addition, however, molecular glues play a variety of vital roles, such as complex stabilization, interactome modulation and transporter inhibition, enabling challenging therapeutic targets to be druggable and offering an exciting novel approach for drug discovery. Since most molecular glues are identified serendipitously, exploration of their systematic discovery and rational design are important. In this review, representative examples of molecular glues with various physiological functions are divided into those mediating homo-dimerization, homo-polymerization and hetero-dimerization according to their aggregation modes, and we attempt to elucidate their mechanisms of action. In particular, we aim to highlight some biochemical techniques typically exploited within these representative studies and classify them in terms of three stages of molecular glue development: starting point, optimization and identification.
10.Study on the compatibility principle of Wutou Decoction based on network pharmacology
WANG Weijie ; YANG Xiaonan ; WANG Yilin ; PAN Hudan ; LIU Liang
Digital Chinese Medicine 2022;5(1):1-8
Objective To investigate the underlying drug enhancement mechanisms of the Chuanwu (Aconiti Radix) and Huangqi (Astragali Radix) combination and toxicity reduction of Chuanwu combined with Gancao (Glycyrrhizae Radix et Rhizoma) in Wutou Decoction (乌头汤, WTD), and to elucidate the compatibility principle. Methods The active compounds and potential effective targets of the selected combinations were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Traditional Chinese Medicines Integrated Database (TCMID). The toxicity of Chuanwu (Aconiti Radix) was investigated by selecting all five toxic compounds from the literature and the TCMSP database, and obtaining their targets through SwissTargetPrediction. Targets related to rheumatoid arthritis (RA) were searched using DisGeNET, GenCards, and Online Mendelian Inheritance in Man (OMIM). Mutual targets between the drug pairs and RA were selected as potential RA therapy targets. The medicinally active compound-target network was constructed using Cytoscape 3.9.0. Gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) platform. Results We obtained 191 active compound targets for Gancao (Glycyrrhizae Radix et Rhizoma), 171 for Huangqi (Astragali Radix), and 103 for Chuanwu (Radix Aconiti) (hypoaconitine’s target was obtained through literature and SwissTargetPrediction). A total of 5872 genes were obtained for RA. A drug-active compound-target network involving 13 effect-enhancing and nine toxicity reduction targets was constructed. PGR was the main effect enhancement target, and KCNH2 was the main toxicity reduction target. The effect-enhancing targets were related to 23 GO terms (such as positive regulation of transcription from RNA polymerase II promoter, steroid hormone-mediated signaling pathway, plasma membrane, and protein binding) (P < 0.01), and 13 KEGG pathways related to synergism [such as estrogen signaling pathway, cholinergic synapse, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway]. The toxicity reduction targets were related to 28 GO terms (mainly involes G-protein coupled receptor signaling pathway, plasma membrane, and drug binding) (P < 0.01), and five KEGG pathways related to toxicity reduction (cholinergic synapse, calcium signaling pathway, regulation of actin cytoskeleton, neuroactive ligand-receptor interaction, and serotonergic synapse). Conclusion The combination of Chuanwu (Aconiti Radix) and Huangqi (Astragali Radix) plays an important effect-enhancing role in WTD and involves the estrogen and PI3K/Akt signaling pathways, with PGR as the core. The Chuanwu (Aconiti Radix) and Gancao (Glycyrrhizae Radix et Rhizoma) combination decreases toxicity in WTD and is associated with the cholinergic synapse and calcium signaling pathways, with KCNH2 as the core.

Result Analysis
Print
Save
E-mail