1.Analysis of risk factors for piracetam-associated thrombocytopenia and the establishment of risk prediction model
Tianmin HUANG ; Xingming LU ; Mei ZHENG ; Guizong GUO ; Xin LU ; Yilin LUO ; Yingxia YANG
China Pharmacy 2025;36(10):1226-1231
OBJECTIVE To analyze the risk factors contributing to piracetam-associated thrombocytopenia and develop a predictive model for risk prediction. METHODS The electronic medical record information of inpatients treated with piracetam was collected retrospectively from the First Affiliated Hospital of Guangxi Medical University from January 2021 to December 2023, including gender, age, underlying diseases, combined medication, and laboratory data, etc. Patients were divided into the occurrence group and the non-occurrence group according to whether thrombocytopenia occurred, and the differences in clinical data between the two groups were compared. The independent risk factors were determined through univariate/multivariate Logistic regression analysis. A nomogram was drawn to visually present the independent risk factors, and a risk prediction model was constructed. The predictive efficacy of the model was evaluated using the receiver operating characteristic (ROC) curve, Bootstrap internal validation and calibration curve. RESULTS A total of 224 patients were included, among which 196 cases were in the non- occurrence group and 28 cases in the occurrence group. The incidence of thrombocytopenia was 12.50%. The results of the univariate Logistic regression analysis showed that the proportion of patients using three or more combined antibiotics and the level of serum creatinine in the occurrence group were significantly higher than those in the non-occurrence group, while the level of hemoglobin was significantly lower (P<0.05). The results of the multivariate Logistic regression analysis revealed that the use of three or more combined antibiotics, low hemoglobin level and high serum creatinine level were independent risk factors for piracetam-associated thrombocytopenia (P<0.05). The constructed risk prediction model was LogitP= -1.114+1.256×three or more combined antibiotics-0.017×hemoglobin level+0.009×serum creatinine level. The AUC of the ROC curve of this model was 0.757, and the optimal cut-off value was 0.474; the AUC of the ROC curve of the Bootstrap internal validation was 0.733; the apparent curve and the bias-corrected curve were close to the ideal curve. CONCLUSIONS The use of three or more antibiotics, along with low hemoglobin level and high serum creatinine level, are identified as independent risk factors for piracetam-associated thrombocytopenia. The developed risk prediction model demonstrates good predictive value.
2.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
3.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
4.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
5.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
6.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
7.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
8.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
9.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
10.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.

Result Analysis
Print
Save
E-mail