1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
		                        		
		                        			
		                        			Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology. 
		                        		
		                        		
		                        		
		                        	
2.The Mechanism of Exercise Regulating Intestinal Flora in The Prevention and Treatment of Depression
Lei-Zi MIN ; Jing-Tong WANG ; Qing-Yuan WANG ; Yi-Cong CUI ; Rui WANG ; Xin-Dong MA
Progress in Biochemistry and Biophysics 2025;52(6):1418-1434
		                        		
		                        			
		                        			Depression, a prevalent mental disorder with significant socioeconomic burdens, underscores the urgent need for safe and effective non-pharmacological interventions. Recent advances in microbiome research have revealed the pivotal role of gut microbiota dysbiosis in the pathogenesis of depression. Concurrently, exercise, as a cost-effective and accessible intervention, has demonstrated remarkable efficacy in alleviating depressive symptoms. This comprehensive review synthesizes current evidence on the interplay among exercise, gut microbiota modulation, and depression, elucidating the mechanistic pathways through which exercise ameliorates depressive symptoms via the microbiota-gut-brain (MGB) axis. Depression is characterized by gut microbiota alterations, including reduced alpha and beta diversity, depletion of beneficial taxa (e.g., Bifidobacterium, Lactobacillus, and Coprococcus), and overgrowth of pro-inflammatory and pathogenic bacteria (e.g., Morganella, Klebsiella, and Enterobacteriaceae). Metagenomic analyses reveal disrupted metabolic functions in depressive patients, such as diminished synthesis of short-chain fatty acids (SCFAs), impaired tryptophan metabolism, and dysregulated bile acid conversion. For instance, Bifidobacterium longum deficiency correlates with reduced synthesis of neuroactive metabolites like homovanillic acid, while decreased Coprococcus abundance limits butyrate production, exacerbating neuroinflammation. Furthermore, elevated levels of indole derivatives from Clostridium species inhibit serotonin (5-HT) synthesis, contributing to depressive phenotypes. These dysbiotic profiles disrupt the MGB axis, triggering systemic inflammation, neurotransmitter imbalances, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Exercise exerts profound effects on gut microbiota composition, diversity, and metabolic activity. Longitudinal studies demonstrate that sustained aerobic exercise increases alpha diversity, enriches SCFA-producing genera (e.g., Faecalibacterium prausnitzii, Roseburia, and Akkermansia), and suppresses pathobionts (e.g., Desulfovibrio and Streptococcus). For example, a meta-analysis of 25 trials involving 1 044 participants confirmed that exercise enhances microbial richness and restores the Firmicutes/Bacteroidetes ratio, a biomarker of metabolic health. Notably, endurance training promotes Veillonella proliferation, which converts lactate into propionate, enhancing energy metabolism and delaying fatigue. Exercise also strengthens intestinal barrier integrity by upregulating tight junction proteins (e.g., ZO-1, occludin), thereby reducing lipopolysaccharide (LPS) translocation and systemic inflammation. However, excessive exercise may paradoxically diminish microbial diversity and exacerbate intestinal permeability, highlighting the importance of moderate intensity and duration. Exercise ameliorates depressive symptoms through multifaceted interactions with the gut microbiota, primarily via 4 interconnected pathways. First, exercise mitigates neuroinflammation by elevating anti-inflammatory SCFAs such as butyrate, which suppresses NF-κB signaling to attenuate microglial activation and oxidative stress in the hippocampus. Animal studies demonstrate that voluntary wheel running reduces hippocampal TNF‑α and IL-17 levels in stress-induced depression models, while fecal microbiota transplantation (FMT) from exercised mice reverses depressive behaviors by modulating the TLR4/NF‑κB pathway. Second, exercise regulates neurotransmitter dynamics by enriching GABA-producing Lactobacillus and Bifidobacterium, thereby counteracting neuronal hyperexcitability. Aerobic exercise also enhances the abundance of Lactobacillus plantarum and Streptococcus thermophilus, which facilitate 5-HT and dopamine synthesis. Clinical trials reveal that 12 weeks of moderate exercise increases fecal Coprococcus and Blautia abundance, correlating with improved 5-HT bioavailability and reduced depression scores. Third, exercise normalizes HPA axis hyperactivity by reducing cortisol levels and restoring glucocorticoid receptor sensitivity. In rodent models, chronic stress-induced corticosterone elevation is reversed by probiotic supplementation (e.g., Lactobacillus), which enhances endocannabinoid signaling and hippocampal neurogenesis. Furthermore, exercise upregulates brain-derived neurotrophic factor (BDNF) via microbial metabolites like butyrate, promoting histone acetylation and synaptic plasticity. FMT experiments confirm that exercise-induced microbiota elevates prefrontal BDNF expression, reversing stress-induced neuronal atrophy. Fourth, exercise reshapes microbial metabolic crosstalk, diverting tryptophan metabolism toward 5-HT synthesis instead of neurotoxic kynurenine derivatives. Butyrate inhibits indoleamine 2,3-dioxygenase (IDO), a key enzyme in the kynurenine pathway linked to depression. Concurrently, exercise-induced Akkermansia enrichment enhances mucin production, fortifies the gut barrier, and reduces LPS-driven neuroinflammation. Collectively, these mechanisms underscore exercise as a potent modulator of the microbiota-gut-brain axis, offering a holistic approach to alleviating depression through microbial and neurophysiological synergy. Current evidence supports exercise as a potent adjunct therapy for depression, with personalized regimens (e.g., aerobic, resistance, or yoga) tailored to individual microbiota profiles. However, challenges remain in optimizing exercise prescriptions (intensity, duration, and type) and integrating them with probiotics, prebiotics, or FMT for synergistic effects. Future research should prioritize large-scale randomized controlled trials to validate causality, multi-omics approaches to decipher MGB axis dynamics, and mechanistic studies exploring microbial metabolites as therapeutic targets. The authors advocate for a paradigm shift toward microbiota-centric interventions, emphasizing the bidirectional relationship between physical activity and gut ecosystem resilience in mental health management. In conclusion, this review underscores exercise as a multifaceted modulator of the gut-brain axis, offering novel insights into non-pharmacological strategies for depression. By bridging microbial ecology, neuroimmunology, and exercise physiology, this work lays a foundation for precision medicine approaches targeting the gut microbiota to alleviate depressive disorders. 
		                        		
		                        		
		                        		
		                        	
3.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
		                        		
		                        			
		                        			Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration. 
		                        		
		                        		
		                        		
		                        	
4.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
		                        		
		                        			
		                        			Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration. 
		                        		
		                        		
		                        		
		                        	
5.Effects of anlotinib on the malignant phenotype of glioma cells by mediating NF-κB signaling pathway
Xin LIU ; Qingshan LI ; Yunpeng XIE ; Shenglin ZHANG ; Yi DONG
China Pharmacy 2024;35(2):192-197
		                        		
		                        			
		                        			OBJECTIVE To investigate the effects of anlotinib on the malignant phenotype of glioma cells by regulating the nuclear factor-κB (NF-κB) signaling pathway. METHODS Human glioma T98G cells were cultured in vitro, and 5-fluorouracil was used as positive control to investigate the effects of different concentrations of anlotinib (5, 10, 20 μmol/L) on the ability of proliferation, adhesion, migration and invasion, the expressions of epithelial-mesenchymal transition (EMT) related proteins [E-cadherin, N-cadherin, vimentin and fibronectin (FN)]. NF- κB signaling pathway inhibitor (BAY 11-7082) and activator (prostratin) were additionally used to verify the possible mechanism of the above effects of anlotinib. RESULTS Anlotinib with 5, 10, 20 μmol/L could significantly decrease the activity of cell proliferation (except for 5 μmol/L anlotinib group), migration rate, and the number of adherent cells and invasive cells, could significantly up-regulate the expression of E-cadherin protein while down-regulate the expressions of N-cadherin, vimentin and FN protein (P<0.05); the effect of 20 μmol/L anlotinib was similar to that of positive control (P>0.05). Compared with 10 μmol/L anlotinib, pathway inhibitor could significantly decrease the ability of proliferation, adhesion, migration and invasion, and the expressions of N-cadherin, vimentin, FN and phosphorylated NF-κB p65 protein, while could significantly up-regulate the expression of E-cadherin protein (P<0.05); above indexes were reversed significantly by pathway activator (P<0.05). CONCLUSIONS Anlotinib may inhibit the proliferation, adhesion, migration and invasion of human glioma T98G cells, which may be associated with the inhibition of the NF-κB signaling pathway, thus inhibiting cell EMT-like processes.
		                        		
		                        		
		                        		
		                        	
7.Variation rules of main secondary metabolites in Hedysari Radix before and after rubbing strip
Xu-Dong LUO ; Xin-Rong LI ; Cheng-Yi LI ; Peng QI ; Ting-Ting LIANG ; Shu-Bin LIU ; Zheng-Ze QIANG ; Jun-Gang HE ; Xu LI ; Xiao-Cheng WEI ; Xiao-Li FENG ; Ming-Wei WANG
Chinese Traditional Patent Medicine 2024;46(3):747-754
		                        		
		                        			
		                        			AIM To investigate the variation rules of main secondary metabolites in Hedysari Radix before and after rubbing strip.METHODS UPLC-MS/MS was adopted in the content determination of formononetin,ononin,calycosin,calycosin-7-glucoside,medicarpin,genistein,luteolin,liquiritigenin,isoliquiritigenin,vanillic acid,ferulic acid,γ-aminobutyric acid,adenosine and betaine,after which cluster analysis,principal component analysis and orthogonal partial least squares discriminant analysis were used for chemical pattern recognition to explore differential components.RESULTS After rubbing strip,formononetin,calycosin,liquiritigenin and γ-aminobutynic acid demonstrated increased contents,along with decreased contents of ononin,calycosin-7-glucoside and vanillic acid.The samples with and without rubbing strip were clustered into two types,calycosin-7-glucoside,formononetin,γ-aminobutynic acid,vanillic acid,calycosin-7-glucoside and formononetin were differential components.CONCLUSION This experiment clarifies the differences of chemical constituents in Hedysari Radix before and after rubbing strip,which can provide a reference for the research on rubbing strip mechanism of other medicinal materials.
		                        		
		                        		
		                        		
		                        	
8.Effects of aging factors on biological characteristics of dental stem cells
Zhiguo XU ; Yanfei WU ; Zhenhui REN ; Xuwei YANG ; Yikun NIU ; Zhilong DONG ; Wei DU ; Wenling YANG ; Xin XU ; Yi ZHU ; Lefeng LIU ; Chao LIU
Chinese Journal of Tissue Engineering Research 2024;28(19):2996-3002
		                        		
		                        			
		                        			BACKGROUND:The research of dental stem cells in the fields of regenerative medicine and tissue engineering has been deepening,bringing hope for the repair of tooth-related tissues and the treatment of systemic diseases.However,there is a lack of systematic research and analysis on the biological characteristics of dental stem cells in different age groups. OBJECTIVE:To explore the biological characteristics of the human deciduous tooth and permanent tooth pulp stem cells cultured in umbilical cord blood platelet lysate to provide a reliable basis for human platelet lysates to replace fetal bovine serum. METHODS:The pulp tissues of deciduous teeth,juvenile permanent teeth and adult permanent teeth were taken out and cultured in DMEM/F-12 medium supplemented with 10%fetal bovine serum or different concentrations(5%,10%and 15%)of human platelet lysates.Cell proliferation in the four groups was detected by cytometry.The optimal concentration of human platelet lysates was selected for subsequent experiments.Under the optimal concentration of human platelet lysates,human deciduous tooth and juvenile and adult permanent tooth pulp stem cells were cultured in vitro.The cell growth status was observed under the microscope.The specific antigen on the cell surface was detected by flow cytometry.The cell proliferation ability was tested by the cell counting method and CCK-8 assay.The cell differentiation ability in vitro was observed by a three-line differentiation assay. RESULTS AND CONCLUSION:(1)The cell proliferation rate of the 10%human platelet lysate group was the highest.(2)In all three groups,fusiform fibrous cells grew and expanded from around the tissue block.There was no significant difference between deciduous teeth and juvenile permanent tooth cells,but the adult permanent tooth cells were larger than the deciduous and juvenile permanent tooth cells of the same generation.(3)The results of flow cytometry showed that deciduous teeth,juvenile permanent teeth and adult permanent teeth conformed to the phenotypic characteristics of mesenchymal stem cells.(4)The proliferative capacity of adult permanent dental pulp stem cells was significantly lower than those of deciduous teeth and juvenile permanent dental pulp stem cells(P<0.01).(5)mRNA expressions of osteoblast-related genes alkaline phosphatase and bone morphogenetic protein 2,lipoprotein lipase and peroxisome proliferator-activated receptor γ2,mRNA expressions of chondroblast related gene type II collagen α1 and cartilage oligomeric matrix protein in adult pulp stem cells of permanent teeth were significantly lower than those of deciduous teeth and juvenile permanent teeth pulp stem cells(P<0.01).(6)Compared with adult dental pulp stem cells,human deciduous teeth and juvenile permanent teeth dental pulp stem cells have the stronger proliferative capacity and multidirectional differentiation potential,and are more suitable for clinical research and disease treatment.
		                        		
		                        		
		                        		
		                        	
9.Study on Traditional Chinese Medicine Syndrome Characteristics of 1676 Heart Failure Inpatients: A Cross-Sectional Survey Based on Real-World Electronic Medical Record Information
Yi DU ; Zheng LI ; Guanlin YANG ; Shuqi DONG ; Wenshuai HUANG ; Nanxing XIAN ; Puyu GUO ; Jiajie QI ; Bohang CHEN ; Xin XU ; Zhe ZHANG ; Yi YANG
Journal of Traditional Chinese Medicine 2024;65(3):299-307
		                        		
		                        			
		                        			ObjectiveTo analyse the clinical characteristics of different traditional Chinese medicine (TCM) syndromes in patients with heart failure based on information from electronic medical record. MethodsA cross-sectional study was conducted to collect clinical data of all inpatients with heart failure in the Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine from January 1, 2019 to December 31, 2020. A database of clinical TCM data was established to explore the characteristics of clinical data of basic information, syndromes and syndrome element types, and biochemical indexes. The distribution of TCM syndromes and syndrome elements in heart failure patients were also analysed, and the basic information and biochemical indexes of the patients with top 7 different TCM syndrome types were compared. ResultsA total of 1676 inpatients with heart fai-lure were included. The top 7 TCM syndromes of heart failure were syndrome of phlegm turbidity and blood stasis (477 cases, 28.46%), syndrome of qi deficiency and blood stasis (439 cases, 26.19%), syndrome of qi deficiency and blood stasis with water retention (274 cases, 16.35%), syndrome of yang deficiency with water retention (145 cases, 8.65%), syndrome of qi and yin deficiency (104 cases, 6.21%), syndrome of qi and yin deficiency with blood stasis (80 cases, 4.77%), syndrome of heart yang deficiency (59 cases, 3.52%). Among the 1676 patients, 6 syndrome elements accounted for more than 5%. Blood stasis accounted for the highest proportion of TCM syndrome element type (1292 cases, 77.09%), followed by qi deficiency (919 cases, 54.83%), phlegm (498 cases, 29.71%), water retention (434 cases, 25.89%), yang deficiency (215 cases, 12.82%) and yin deficiency (191 cases, 11.40%). Among the 1676 patients, 1308 cases of acute heart failure mainly showed syndrome of phlegm turbidity and blood stasis (386 cases, 29.51%), and 368 of chronic heart fai-lure mainly showed syndrome of qi deficiency and blood stasis (118 cases, 32.07%). Patients with syndrome of phlegm turbidity and blood stasis had the shortest disease duration of 0.3 months, while those with syndrome of heart yang deficiency had the longest disease duration of 15 months. The proportion of syndrome of phlegm turbidity and blood stasis was the highest in patients with heart failure combined with coronary artery disease, the proportion of syndrome of qi deficiency and blood stasis with water retention was the highest in patients with heart failure combined with atrial fibrillation, and the proportion of patients with syndrome of qi deficiency and blood stasis with water retention and syndrome of yang deficiency with water retention in those applying diuretics during the hospital stay was the highest with more than 86%. The different 7 TCM syndromes showed statistically difference in patients with complications including coronary artery disease, old myocardial infarction, atrial fibrillation, pre and post-admission medication usage including intravenous vasodilators, cardiac stimulants, diuretics, and level of blood chloride, blood urea, blood creatinine, blood bicarbonate, blood albumin, and blood total bilirubin (P<0.05). ConclusionThe most common TCM syndromes in patients with heart failure are syndrome of phlegm turbidity and blood stasis and syndrome of qi deficiency and blood stasis. Different TCM syndromes have different characteristics in gender, disease complications, medication before and after admission, and blood indexes. 
		                        		
		                        		
		                        		
		                        	
		                				10.Study on the chemical constituents of triterpenoids in Patrinia villosa  Juss.
		                			
		                			Qi-guo WU ; Le-yi HUANG ; Zhi CHEN ; Dong-feng LIU ; Yong-li WANG ; Gui-xin CHOU
Acta Pharmaceutica Sinica 2024;59(4):1005-1009
		                        		
		                        			
		                        			 Seven triterpenoids were isolated and purified from the 95% aqueous EtOH extract whole plants of 
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail