1.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
Objective:
Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA).
Methods:
The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox.
Results:
Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%.
Conclusion
This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia.
2.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
3.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
Objective:
Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA).
Methods:
The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox.
Results:
Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%.
Conclusion
This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia.
4.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
Objective:
Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA).
Methods:
The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox.
Results:
Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%.
Conclusion
This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia.
5.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
6.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
Objective:
Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA).
Methods:
The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox.
Results:
Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%.
Conclusion
This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia.
7.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
8.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
Objective:
Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA).
Methods:
The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox.
Results:
Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%.
Conclusion
This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia.
9.Discussion on WU Wei's Thoughts for the Treatment of Atrial Fibrillation Based on the Theory of Stasis-Toxin Causing Palpitation
Hui-Qi ZHAI ; Yi-Hua LI ; Liang KANG ; Run-Jia YU ; Rong LI ; Hui WU ; Xiao-Xiong ZHOU ; Zhi-Yi DU ; Qing-Min CHU ; Wei WU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(5):1316-1322
For the treatment of atrial fibrillation,Professor WU Wei innovatively put forward the theory of heart-blood-vessels trinity and the theory of stasis-toxin causing palpitation.It is believed that atrial fibrillation is caused by stasis and toxin,and affects the heart,blood and vessels.The core pathogenesis of atrial fibrillation is due to qi stagnation,blood stasis and toxin.The treatment for atrial fibrillation should be closely based on the pathogenesis,the therapeutic principles of treating from the perspective of stasis and together by removing toxin gradually is advocated.And the therapy of regulating qi,activating blood and removing stasis is also the way to remove toxin.The medication is based on the modified Taoren Honghua Decoction,which is mainly composed of Persicae Semen,Carthami Flos,Chuanxiong Rhizoma,Corydalis Rhizoma,Rehmanniae Radix,Paeoniae Radix Rubra,Salviae Miltiorrhizae Radix et Rhizoma,Jujubae Fructus,Puerariae Lobatae Radix,Nardostachyos Radix et Rhizoma,Ostreae Concha,Poria,and Polygonati Odorati Rhizoma.According to the characteristics of Lingnan climate and atrial fibrillation mostly being easy to affect the emotions,the pungent drugs in the prescription are usually removed,and the specific herbal pair of Puerariae Lobatae Radix-Nardostachyos Radix et Rhizoma is added to remove toxin according to the differentiation of disease.Moreover,for the treatment of atrial fibrillation,Professor WU Wei also adopts traditional Chinese medicine(TCM)external treatment such as foot bath,acupuncture and moxibustion,and physical-breathing exercise as well as health-care methods for comprehensive regulation,relieving the toxin and restoring the original qi.During the treatment atrial fibrillation,Professor WU Wei follows the principle of precise intervention and comprehensive regulation with Chinese medicine,so as to achieve the purpose of eliminating symptoms,restoring sinus rhythm and improving physical constitution.The thoughts of Professor WU Wei for the syndrome differentiation and treatment of atrial fibrillation will provide reference for the treatment of atrial fibrillation with TCM.
10.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.

Result Analysis
Print
Save
E-mail