1.Establishment and Evaluation Strategy of an in Vitro Cell Model of Bone Marrow Microenvironment Injury in Mouse Acute Graft-Versus-Host Disease
Jia-Yi TIAN ; Pei-Lin LI ; Jie TANG ; Run-Xiang XU ; Bo-Feng YIN ; Fei-Yan WANG ; Xiao-Tong LI ; Hong-Mei NING ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2024;32(2):617-624
Objective:To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease(aGVHD).Methods:Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors,and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients.The recipient mouse received a lethal dose(8.0 Gy,72.76 cGy/min)of total body γ irradiation,and injected with donor mouse derived bone marrow cells(1× 107/mouse)in 6-8 hours post irradiation to establish a bone marrow transplantation(BMT)mouse model(n=20).In addition,the recipient mice received a lethal dose(8.0 Gy,72.76 cGy/min)of total body γ irradiation,and injected with donor mouse derived bone marrow cells(1 × 107/mouse)and spleen lymphocytes(2 × 106/mouse)in 6-8 hours post irradiation to establish a mouse aGVHD model(n=20).On the day 7 after modeling,the recipient mice were anesthetized and the blood was harvested post eyeball enucleation.The serum was collected by centrifugation.Mouse MSCs were isolated and cultured with the addition of 2%,5%,and 10%recipient serum from BMT group or aGVHD group respectively.The colony-forming unit-fibroblast(CFU-F)experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC.The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining.In addition,the expression of self-renewal-related genes including Oct-4,Sox-2,and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR).Results:We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD.CFU-F assay showed that,on day 7 after the culture,compared with the BMT group,MSC colony formation ability of aGVHD serum concentrations groups of 2%and 5%was significantly reduced(P<0.05);after the culture,at day 14,compared with the BMT group,MSC colony formation ability in different aGVHD serum concentration was significantly reduced(P<0.05).The immunofluorescence staining showed that,compared with the BMT group,the proportion of MSC surface molecules CD29+and CD 105+cells was significantly dereased in the aGVHD serum concentration group(P<0.05),the most significant difference was at a serum concentration of 10%(P<0.001,P<0.01).The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4,Sox-2,and Nanog was decreased,the most significant difference was observed at an aGVHD serum concentration of 10%(P<0.01,P<0.001,P<0.001).Conclusion:By co-culturing different concentrations of mouse aGVHD serum and mouse MSC,we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability,which providing a new tool for the field of aGVHD bone marrow microenvironment damage.
2.Metabolic Disease Management Guideline for National Metabolic Management Center(2nd edition)
Weiqing WANG ; Yufan WANG ; Guixia WANG ; Guang NING ; Dalong ZHU ; Ping LIU ; Libin LIU ; Jianmin LIU ; Zhaoli YAN ; Xulei TANG ; Bangqun JI ; Sunjie YAN ; Heng SU ; Jianling DU ; Sheli LI ; Li LI ; Shengli WU ; Jinsong KUANG ; Yubo SHA ; Ping ZHANG ; Yifei ZHANG ; Lei CHEN ; Zunhai ZHOU ; Chao ZHENG ; Qidong ZHENG ; Zhongyan SHAN ; Dong ZHAO ; Zhigang ZHAO ; Ling HU ; Tingyu KE ; Yu SHI ; Yingfen QIN ; Mingjun GU ; Xuejiang GU ; Fengmei XU ; Zuhua GAO ; Qijuan DONG ; Yi SHU ; Yuancheng DAI
Chinese Journal of Endocrinology and Metabolism 2023;39(6):538-554
The latest epidemiological data suggests that the situation of adult diabetes in China is severe, and metabolic diseases have become significant chronic illnesses that have a serious impact on public health and social development. After more than six years of practice, the National Metabolic Management Center(MMC) has developed distinctive approaches to manage metabolic patients and has achieved a series of positive outcomes, continuously advancing the standardized diagnosis and treatment model. In order to further improve the efficiency, based on the first edition, the second edition guideline was composed by incorporating experience of the past six years in conjunction with the latest international and domestic guidelines.
3.Establishment and Evaluation of Intestinal Injury Model of Mouse Acute Graft Versus Host Disease Based on An Organoid Technology.
Meng-Yue HAN ; Pei-Lin LI ; Bo-Feng YIN ; Zhi-Ling LI ; Rui-Cong HAO ; Xiao-Tong LI ; Fei-Yan WANG ; Jia-Yi TIAN ; Li DING ; Hong-Mei NING ; Wen-Qing WU ; Heng ZHU
Journal of Experimental Hematology 2023;31(1):233-240
OBJECTIVE:
To establish an intestinal organoid model that mimic acute graft versus host disease (aGVHD) caused intestinal injuries by using aGVHD murine model serum and organoid culture system, and explore the changes of aGVHD intestine in vitro by advantage of organoid technology.
METHODS:
20-22 g female C57BL/6 mice and 20-22 g female BALB/c mice were used as donors and recipients for bone marrow transplantation, respectively. Within 4-6 h after receiving a lethal dose (8.0 Gy) of γ ray total body irradiation, a total of 0.25 ml of murine derived bone marrow cells (1×107/mice, n=20) and spleen nucleated cells (5×106/mice, n=20) was infused to establish a mouse model of aGVHD (n=20). The aGVHD mice were anesthetized at the 7th day after transplantation, and the veinal blood was harvested by removing the eyeballs, and the serum was collected by centrifugation. The small intestinal crypts of healthy C57BL/6 mice were harvested and cultivated in 3D culture system that maintaining the growth and proliferation of intestinal stem cells in vitro. In our experiment, 5%, 10%, 20% proportions of aGVHD serum were respectively added into the organoid culture system for 3 days. The formation of small intestinal organoids were observed under an inverted microscope and the morphological characteristics of intestinal organoids in each groups were analyzed. For further evaluation, the aGVHD intestinal organoids were harvested and their pathological changes were observed. Combined with HE staining, intestinal organ morphology evaluation was performed. Combined with Alcian Blue staining, the secretion function of aGVHD intestinal organoids was observed. The distribution and changes of Lgr5+ and Clu+ intestinal stem cells in intestinal organoids were analyzed under the conditions of 5%, 10% and 20% serum concentrations by immunohistochemical stainings.
RESULTS:
The results of HE staining showed that the integrity of intestinal organoids in the 5% concentration serum group was better than that in the 10% and 20% groups. The 5% concentration serum group showed the highest number of organoids, the highest germination rate and the lowest pathological score among experimental groups, while the 20% group exhibited severe morphological destruction and almost no germination was observed, and the pathological score was the highest among all groups(t=3.668, 4.334,5.309,P<0.05). The results of Alican blue staining showed that the secretion function of intestinal organoids in serum culture of aGVHD in the 20% group was weaker than that of the 5% group and 10% of the organoids, and there was almost no goblet cells, and mucus was stainned in the 20% aGVHD serum group. The immunohistochemical results showed that the number of Lgr5+ cells of intestinal organoids in the 5% group was more than that of the intestinal organoids in the 10% aGVHD serum group and 20% aGVHD serum group. Almost no Clu+ cells were observed in the 5% group. The Lgr5+ cells in the 20% group were seriously injuried and can not be observed. The proportion of Clu+ cells in the 20% group significantly increased.
CONCLUSION
The concentration of aGVHD serum in the culture system can affect the number and secretion function of intestinal organoids as well as the number of intestinal stem cells in organoids. The higher the serum concentration, the greater the risk of organoid injury, which reveal the characteristics of the formation and functional change of aGVHD intestinal organoids, and provide a novel tool for the study of intestinal injury in aGVHD.
Mice
;
Female
;
Animals
;
Mice, Inbred C57BL
;
Bone Marrow Transplantation
;
Graft vs Host Disease
;
Stem Cells
;
Organoids
4.Characterization of candidate factors associated with the metastasis and progression of high-grade serous ovarian cancer.
Huiping LIU ; Ling ZHOU ; Hongyan CHENG ; Shang WANG ; Wenqing LUAN ; E CAI ; Xue YE ; Honglan ZHU ; Heng CUI ; Yi LI ; Xiaohong CHANG
Chinese Medical Journal 2023;136(24):2974-2982
BACKGROUND:
High-grade serous ovarian cancer (HGSOC) is the biggest cause of gynecological cancer-related mortality because of its extremely metastatic nature. This study aimed to explore and evaluate the characteristics of candidate factors associated with the metastasis and progression of HGSOC.
METHODS:
Transcriptomic data of HGSOC patients' samples collected from primary tumors and matched omental metastatic tumors were obtained from three independent studies in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were selected to evaluate the effects on the prognosis and progression of ovarian cancer using data from The Cancer Genome Atlas (TCGA) database. Hub genes' immune landscapes were estimated by the Tumor Immune Estimation Resource (TIMER) database. Finally, using 25 HGSOC patients' cancer tissues and 10 normal fallopian tube tissues, immunohistochemistry (IHC) was performed to quantify the expression levels of hub genes associated with International Federation of Gynecology and Obstetrics (FIGO) stages.
RESULTS:
Fourteen DEGs, ADIPOQ , ALPK2 , BARX1 , CD37 , CNR2 , COL5A3 , FABP4 , FAP , GPR68 , ITGBL1 , MOXD1 , PODNL1 , SFRP2 , and TRAF3IP3 , were upregulated in metastatic tumors in every database while CADPS , GATA4 , STAR , and TSPAN8 were downregulated. ALPK2 , FAP , SFRP2 , GATA4 , STAR , and TSPAN8 were selected as hub genes significantly associated with survival and recurrence. All hub genes were correlated with tumor microenvironment infiltration, especially cancer-associated fibroblasts and natural killer (NK) cells. Furthermore, the expression of FAP and SFRP2 was positively correlated with the International Federation of Gynecology and Obstetrics (FIGO) stage, and their increased protein expression levels in metastatic samples compared with primary tumor samples and normal tissues were confirmed by IHC ( P = 0.0002 and P = 0.0001, respectively).
CONCLUSIONS
This study describes screening for DEGs in HGSOC primary tumors and matched metastasis tumors using integrated bioinformatics analyses. We identified six hub genes that were correlated with the progression of HGSOC, particularly FAP and SFRP2 , which might provide effective targets to predict prognosis and provide novel insights into individual therapeutic strategies for HGSOC.
Humans
;
Female
;
Ovarian Neoplasms/pathology*
;
Prognosis
;
Gene Expression Profiling
;
Transcriptome
;
Tumor Microenvironment
;
Receptors, G-Protein-Coupled/therapeutic use*
;
Tetraspanins/genetics*
;
Protein Kinases
;
Integrin beta1/therapeutic use*
5.A new cinnamic acid ester derivative from Liquidambaris Resina.
Shao-Ying XU ; Qin-Wen XIAO ; Su-Min ZHAO ; Yi-Jian GUAN ; Liao-Heng YUAN ; Yao ZHU ; Chao-Jie WANG ; Peng-Cheng YAN ; Jian-Yong DONG
China Journal of Chinese Materia Medica 2023;48(15):4130-4136
Twelve compounds were isolated from Liquidambaris Resina by silica gel column chromatography and thin layer chromatography. Their structures were identified on the basis of spectral data, electron capture detector data, and physicochemical properties as(2'R, 3'R)-2',3'-dihydroxy-hydrocinnamyl-(E)-cinnamate(1),(E)-cinnamyl-(E)-cinnamate(2), cinnamic acid(3), 28-norlup-20(29)-en-3-one-17β-hydroperoxide(4), erythrodiol(5), 13β,28-epoxy-30-hydroxyolean-1-en-3-one(6),(3β)-olean-12-ene-3,23-diol(7), 2α,3α-dihydroxy-olean-12-en-28-oic acid(8), 28-hydroxyolean-12-en-3-one(9), 3-epi-oleanolic acid(10), 3-oxo-oleanolic acid(11), and hederagenin(12). Compound 1 was a new cinnamic acid ester derivative and compounds 2-4,6-8, and 12 were isolated from Liquidambaris Resina for the first time. Compounds 4, 5, 10, and 12 exerted inhibitory effects on the proliferation of human umbilical vein endothelial cells(HUVEC) with the IC_(50) values of(17.43±2.17),(35.32±0.61),(27.50±0.80), and(46.30±0.30) μmol·L~(-1), respectively.
Humans
;
Oleanolic Acid
;
Endothelial Cells
;
Esters
;
Cinnamates
;
Triterpenes/chemistry*
;
Molecular Structure
6.Progress in clinical studies in cardiovascular surgery 2022
Heng ZHANG ; Yi YANG ; Shuo YUAN ; Yunpeng ZHU ; Zhe ZHENG ; Qiang ZHAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2023;30(08):1089-1096
In 2022, many excellent clinical studies emerged in the field of cardiovascular surgery. Selecting papers published in The New England Journal of Medicine and other top medicine and cardiology journals, this review focused on the research progress on 7 topics in the field of cardiovascular surgery: coronary artery surgery, vascular surgery, valvular surgery, structural heart disease, congenital heart disease, heart transplantation, perioperative management, and special population.
7.Expression and significance of jumonji domain-containing protein 2B and hypoxia inducible factor-1α in non-Hodgkin lymphoma tissues in children.
Yu-Qiao DIAO ; Jian WANG ; Xiu-Li ZHU ; Jian CHEN ; Yu ZHENG ; Lian JIANG ; Yue-Ping LIU ; Ruo-Heng DAI ; Yi-Wei YAN
Chinese Journal of Contemporary Pediatrics 2023;25(11):1150-1155
OBJECTIVES:
To investigate the expression and significance of jumonji domain-containing protein 2B (JMJD2B) and hypoxia-inducible factor-1α (HIF-1α) in non-Hodgkin's lymphoma (NHL) tissues in children.
METHODS:
Immunohistochemistry was used to detect the expression of JMJD2B and HIF-1α in lymph node tissue specimens from 46 children with NHL (observation group) and 24 children with reactive hyperplasia (control group). The relationship between JMJD2B and HIF-1α expression with clinicopathological characteristics and prognosis in children with NHL, as well as the correlation between JMJD2B and HIF-1α expression in NHL tissues, were analyzed.
RESULTS:
The positive expression rates of JMJD2B (87% vs 21%) and HIF-1α (83% vs 42%) in the observation group were higher than those in the control group (P<0.05). The expression of JMJD2B and HIF-1α was correlated with serum lactate dehydrogenase levels and the risk of international prognostic index in children with NHL (P<0.05). The expression of JMJD2B was positively correlated with the HIF-1α expression in children with NHL (rs=0.333, P=0.024).
CONCLUSIONS
JMJD2B and HIF-1α are upregulated in children with NHL, and they may play a synergistic role in the development of pediatric NHL. JMJD2B can serve as a novel indicator for auxiliary diagnosis, evaluation of the severity, treatment guidance, and prognosis assessment in pediatric NHL.
Humans
;
Child
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
Prognosis
;
Hypoxia
;
Lymphoma, Non-Hodgkin
8.Identification of Cordyceps cicadae and Tolypocladium dujiaolongae based on ITS sequences and chemical pattern recognition method.
Xiao-Cui HE ; Jing-Qiong WAN ; Yi-Ling ZHU ; Yuan WEI ; Heng-Lin CUI ; Bin YANG ; Zhen OUYANG
China Journal of Chinese Materia Medica 2022;47(2):403-411
Based on ITS sequences, the molecular identification of Cordyceps cicadae and Tolypocladium dujiaolongae was carried out, and high-performance liquid chromatography(HPLC) fingerprint combined with chemical pattern recognition method was established to differentiate C. cicadae from its adulterant T. dujiaolongae. The genomic DNA from 10 batches of C. cicadae and five batches of T. dujiaolongae was extracted, and ITS sequences were amplified by PCR and sequenced. The stable differential sites of these two species were compared and the phylogenetic tree was constructed via MEGA 7.0. HPLC was used to establish the fingerprints of C. cicadae and T. dujiaolongae, and similarity evaluation, cluster analysis(CA), principal component analysis(PCA), and partial least squares discriminant analysis(PLS-DA) were applied to investigate the chemical pattern recognition. The result showed that the sources of these two species were different, and there were 115 stable differential sites in ITS sequences of C. cicadae and T. dujiao-longae. The phylogenetic tree could distinguish them effectively. HPLC fingerprints of 18 batches of C. cicadae and 5 batches of T. dujiaolongae were established. The results of CA, PCA, and PLS-DA were consistent, which could distinguish them well, indicating that there were great differences in chemical components between C. cicadae and T. dujiaolongae. The results of PLS-DA showed that six components such as uridine, guanosine, adenosine, and N~6-(2-hydroxyethyl) adenosine were the main differential markers of the two species. ITS sequences and HPLC fingerprint combined with the chemical pattern recognition method can serve as the identification and differentiation methods for C. cicadae and T. dujiaolongae.
Chromatography, High Pressure Liquid/methods*
;
Cordyceps/genetics*
;
Hypocreales
;
Phylogeny
9.Tanshinone IIa attenuates vascular calcification through inhibition of NF-κB and β-catenin signaling pathways.
Hui ZHONG ; Dai-Ying LI ; Su-Ying WANG ; Jie-Yi CHEN ; Jia-Xin CHEN ; Xiao TAN ; Yue-Heng WANG ; Yu-Chen XIE ; Dong-Xing ZHU
Acta Physiologica Sinica 2022;74(6):949-958
Tanshinone IIa is a key ingredient extracted from the traditional Chinese medicine Salvia miltiorrhiza (Danshen), and is widely used to treat various cardiovascular diseases. Vascular calcification is a common pathological change of cardiovascular tissues in patients with chronic kidney disease, diabetes, hypertension and atherosclerosis. However, whether Tanshinone IIa inhibits vascular calcification and the underlying mechanisms remain largely unknown. This study aims to investigate whether Tanshinone IIa can inhibit vascular calcification using high phosphate-induced vascular smooth muscle cell and aortic ring calcification model, and high dose vitamin D3 (vD3)-induced mouse models of vascular calcification. Alizarin red staining and calcium quantitative assay showed that Tanshinone IIa significantly inhibited high phosphate-induced vascular smooth muscle cell and aortic ring calcification. qPCR and Western blot showed that Tanshinone IIa attenuated the osteogenic transition of vascular smooth muscle cells. In addition, Tanshinone IIa also significantly inhibited high dose vD3-induced mouse aortic calcification and aortic osteogenic transition. Mechanistically, Tanshinone IIa inhibited the activation of NF-κB and β-catenin signaling in normal vascular smooth muscle cells. Similar to Tanshinone IIa, inhibition of NF-κB and β-catenin signaling using the chemical inhibitors SC75741 and LF3 attenuated high phosphate-induced vascular smooth muscle cell calcification. These results suggest that Tanshinone IIa attenuates vascular calcification at least in part through inhibition of NF-κB and β-catenin signaling, and Tanshinone IIa may be a potential drug for the treatment of vascular calcification.
Animals
;
Mice
;
NF-kappa B/metabolism*
;
beta Catenin/metabolism*
;
Signal Transduction
;
Myocytes, Smooth Muscle/metabolism*
;
Vascular Calcification/metabolism*
;
Phosphates/metabolism*
10. Schisandrae Fructus oil-induced elevation in serum triglyceride and lipoprotein concentrations associated with physiologic hepatomegaly in mice
Si-Yuan PAN ; Xue-Lan SONG ; Zhao-Heng LIN ; Hai-Chuan TAI ; Si-Yuan PAN ; Qing YU ; Yi ZHANG ; Gan LUO ; Xiao-Yan WANG ; Nan SUN ; Zhu-Sheng CHU ; Yi ZHANG ; Pei-Li ZHU ; Zhi-Ling YU ; Kam-Ming KO
Asian Pacific Journal of Tropical Biomedicine 2022;12(2):59-68
Objective: To investigate hypertriglyceridemia and hepatomegaly caused by Schisandrae Sphenantherae Fructus (FSS) and Schisandra chinensis Fructus (FSC) oils in mice. Methods: Mice were orally administered a single dose of Schisandrae Fructus oils. Serum and hepatic triglyceride (TG), triglyceride transfer protein (TTP), apolipoprotein B48 (Apo B48), very-low-density lipoprotein (VLDL), hepatocyte growth factor (HGF), alanine aminotransfease (ALT) and liver index were measured at 6-120 h post-dosing. Results: FSS and FSC oil caused time and dose-dependent increases in serum and hepatic TG levels, with maximum increases in the liver (by 297% and 340%) at 12 h post-dosing and serum (244% and 439%) at 24-h post-dosing, respectively. Schisandrae Fructus oil treatments also elevated the levels of serum TTP by 51% and 63%, Apo B48 by 152% and 425%, and VLDL by 67% and 38% in mice, respectively. FSS and FSC oil treatments also increased liver mass by 53% and 55% and HGF by 106% and 174%, but lowered serum ALT activity by 38% and 22%, respectively. Fenofibrate pre/ co-treatment attenuated the FSS and FSC oil-induced elevation in serum TG levels by 41% and 49% at 48 h post-dosing, respectively, but increased hepatic TG contents (by 38% and 33%, respectively) at 12 h post-dosing. Conclusions: Our findings provide evidence to support the establishment of a novel mouse model of hypertriglyceridemia by oral administration of FSS oil (mainly increasing endogenous TG) and FSC oil (mainly elevating exogenous TG).

Result Analysis
Print
Save
E-mail