1.Mechanism of Xuefu Zhuyutang in Intervening in Ferroptosis in Rats with Coronary Heart Disease with Blood Stasis Syndrome Based on ACSL4 Signalling Pathway
Yi LIU ; Yang YANG ; Chang SU ; Peng TIAN ; Mingyun WANG ; Ruqian ZHONG ; Xuejiao XIE ; Qing YAN ; Qinghua PENG ; Qiuyan ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):27-38
ObjectiveTo investigate the mechanism of ferroptosis mediated by long-chain acyl-CoA synthetase 4 (ACSL4) signalling pathway in rats with coronary heart disease with blood stasis syndrome and the intervention effect of Xuefu Zhuyutang. MethodsSPF male SD rats were randomly divided into normal group, sham-operation group, model group, trimetazidine group (5.4 mg·kg-1), low-, medium-, and high-dose group (3.51, 7.02,14.04 g·kg-1) of Xuefu Zhuyutang. The coronary artery left anterior descending ligation method was used to prepare a model of coronary heart disease with blood stasis syndrome, and continuous treatment for 7 d was conducted, while the sham-operation group was only threaded and not ligated. The general macroscopic symptoms of the rats were observed, and indicators such as electrocardiogram, echocardiography, and blood rheology were detected. The pathological morphology of myocardial tissue was observed by hematoxylin-eosin (HE) staining, and the changes in mitochondria in myocardial tissue were observed by transmission electron microscopy. The level of iron deposition in myocardial tissue was observed by Prussian blue staining. The levels of 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-HETE were detected in serum by enzyme-linked immunosorbent assay. A biochemical colourimetric assay was used to detect the levels of Fe2+, lipid peroxidation (LPO), glutathione (GSH), and T-GSH/glutathione disulfide (GSSG) in myocardial tissue. DCFH-DA fluorescence quantitative assay was employed to detect the levels of reactive oxygen species (ROS). Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was adopted to detect the protein and mRNA expressions of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), ACSL4, and ly-sophosphatidylcholine acyltransferase3 (LPCAT3) in myocardial tissue. ResultsCompared with those in the normal group, the rats in the model group were poor in general macroscopic symptoms. The electrocardiogram showed widened QRS wave amplitude and increased voltage, bow-back elevation of the ST segments, elevated T waves, J-point elevation, and accelerated heart rate. Echocardiography showed a significant reduction in left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) (P<0.01). Blood rheology showed that the viscosity of the whole blood (low, medium, and high rate of shear) was significantly increased (P<0.01). HE staining showed an abnormal structure of myocardial tissue. There was a large area of myocardial necrosis and inflammatory cell infiltration and a large number of connective tissue between myocardial fibers. Transmission electron microscopy showed that the mitochondria were severely atrophy or swelling. The cristae were reduced or even broken, and the matrix was flocculent or even vacuolated. Prussian blue staining showed that there were a large number of iron-containing particles, and the iron deposition was obvious. The content of 12-HETE and 15-HETE in the serum was significantly increased (P<0.01). The content of Fe2+, LPO, and ROS in myocardial tissue was significantly increased (P<0.01). The content of GSH was significantly decreased (P<0.01), and T-GSH/GSSG was decreased (P<0.01). The protein and mRNA expressions of GPX4 and FTH1 in myocardial tissue were both significantly decreased (P<0.05, P<0.01), while those of ACSL4 and LPCAT3 increased significantly (P<0.01). Compared with the model group, the general macroscopic symptoms and electrocardiogram results of rats in low-, medium- and high-dose groups of Xuefu Zhuyutang were alleviated, and the differences in LVEF/LVFS ratios were all significantly increased (P<0.05, P<0.01). The differences in whole-blood viscosity (low, medium, and high rate of shear) were all significantly decreased (P<0.01). The results of HE staining and transmission electron microscopy showed that the morphology, structure, and mitochondria of cardiomyocytes were improved. The content of 12-HETE and 15-HETE in serum was reduced to different degrees in low-, medium-, and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01). The content of Fe2+, LPO, and ROS was significantly reduced in the medium- and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01), and the content of GSH and T-GSH/GSSG was significantly increased (P<0.05, P<0.01). The protein and mRNA expressions of GPX4 and FTH1 were significantly increased to varying degrees in the medium- and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01), and ACSL4 and LPCAT3 were decreased to different degrees in the low-, medium-, and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01). ConclusionXuefu Zhuyutang can regulate iron metabolism and anti-lipid oxidation reaction to mediate ferroptosis through the ACSL4 signalling pathway, thus exerting a protective effect on rats with coronary heart disease with blood stasis syndrome.
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.Association analyses of early medication clocking-in trajectory with smart tools and treatment outcome in pulmonary tuberculosis patients
Chunhua XU ; Zheyuan WU ; Yong WU ; Qing WANG ; Zichun WANG ; Nan QIN ; Xinru LI ; Yucong YAO ; Kehua YI ; Yi HU
Shanghai Journal of Preventive Medicine 2025;37(3):210-214
ObjectiveTo construct a group-based trajectory model (GBTM) for early medication adherence check-in, and to analyze the relationship between different trajectories and treatment outcomes in tuberculosis patients using data that were generated from smart tools for monitoring their medication adherence and check-in. MethodsFrom October 1, 2022 to September 30, 2023, a total of 163 pulmonary tuberculosis patients diagnosed in Fengxian District were selected as the study subjects. The GBTM was utilized to analyze the weekly active check-in trajectories of the subjects during the first 4 weeks and establish different trajectory groups. The χ² tests were employed to compare the differences between groups and logistic regression analysis was conducted to explore the relationship between different trajectory groups and treatment outcomes. ResultsA total of four groups were generated by GBTM analyses, of which a low level of punch card was maintained in group A, 6% of the drug users increased rapidly from a low level in group B, 17% of drug users increased gradually from a low level in group C, and 18% of drug users maintained a high level of punch card in group D. The trajectory group was divided into two groups according to homogeneity, namely the low level medication punch card group (group A) and the high level medication punch card group (group B, group C, and group D). The results of multivariate logistic regression analyses revealed that low-level medication check-in (OR=3.250, 95%CI: 1.089‒9.696), increasing age (OR=1.030, 95%CI: 1.004‒1.056), and not undergoing sputum examination at the end of the fifth month (OR=2.746, 95%CI: 1.090‒7.009) were significantly associated with poor treatment outcomes. ConclusionThe medication check-in trajectory of pulmonary tuberculosis patients within the first 4 weeks is correlated with adverse outcomes, or namely consistent low-level medication adherence check-ins are associated with poor treatment outcomes, while high-level medication adherence check-ins are associated with a lower incidence of adverse outcomes.
4.The Mechanism of Exercise Regulating Intestinal Flora in The Prevention and Treatment of Depression
Lei-Zi MIN ; Jing-Tong WANG ; Qing-Yuan WANG ; Yi-Cong CUI ; Rui WANG ; Xin-Dong MA
Progress in Biochemistry and Biophysics 2025;52(6):1418-1434
Depression, a prevalent mental disorder with significant socioeconomic burdens, underscores the urgent need for safe and effective non-pharmacological interventions. Recent advances in microbiome research have revealed the pivotal role of gut microbiota dysbiosis in the pathogenesis of depression. Concurrently, exercise, as a cost-effective and accessible intervention, has demonstrated remarkable efficacy in alleviating depressive symptoms. This comprehensive review synthesizes current evidence on the interplay among exercise, gut microbiota modulation, and depression, elucidating the mechanistic pathways through which exercise ameliorates depressive symptoms via the microbiota-gut-brain (MGB) axis. Depression is characterized by gut microbiota alterations, including reduced alpha and beta diversity, depletion of beneficial taxa (e.g., Bifidobacterium, Lactobacillus, and Coprococcus), and overgrowth of pro-inflammatory and pathogenic bacteria (e.g., Morganella, Klebsiella, and Enterobacteriaceae). Metagenomic analyses reveal disrupted metabolic functions in depressive patients, such as diminished synthesis of short-chain fatty acids (SCFAs), impaired tryptophan metabolism, and dysregulated bile acid conversion. For instance, Bifidobacterium longum deficiency correlates with reduced synthesis of neuroactive metabolites like homovanillic acid, while decreased Coprococcus abundance limits butyrate production, exacerbating neuroinflammation. Furthermore, elevated levels of indole derivatives from Clostridium species inhibit serotonin (5-HT) synthesis, contributing to depressive phenotypes. These dysbiotic profiles disrupt the MGB axis, triggering systemic inflammation, neurotransmitter imbalances, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Exercise exerts profound effects on gut microbiota composition, diversity, and metabolic activity. Longitudinal studies demonstrate that sustained aerobic exercise increases alpha diversity, enriches SCFA-producing genera (e.g., Faecalibacterium prausnitzii, Roseburia, and Akkermansia), and suppresses pathobionts (e.g., Desulfovibrio and Streptococcus). For example, a meta-analysis of 25 trials involving 1 044 participants confirmed that exercise enhances microbial richness and restores the Firmicutes/Bacteroidetes ratio, a biomarker of metabolic health. Notably, endurance training promotes Veillonella proliferation, which converts lactate into propionate, enhancing energy metabolism and delaying fatigue. Exercise also strengthens intestinal barrier integrity by upregulating tight junction proteins (e.g., ZO-1, occludin), thereby reducing lipopolysaccharide (LPS) translocation and systemic inflammation. However, excessive exercise may paradoxically diminish microbial diversity and exacerbate intestinal permeability, highlighting the importance of moderate intensity and duration. Exercise ameliorates depressive symptoms through multifaceted interactions with the gut microbiota, primarily via 4 interconnected pathways. First, exercise mitigates neuroinflammation by elevating anti-inflammatory SCFAs such as butyrate, which suppresses NF-κB signaling to attenuate microglial activation and oxidative stress in the hippocampus. Animal studies demonstrate that voluntary wheel running reduces hippocampal TNF‑α and IL-17 levels in stress-induced depression models, while fecal microbiota transplantation (FMT) from exercised mice reverses depressive behaviors by modulating the TLR4/NF‑κB pathway. Second, exercise regulates neurotransmitter dynamics by enriching GABA-producing Lactobacillus and Bifidobacterium, thereby counteracting neuronal hyperexcitability. Aerobic exercise also enhances the abundance of Lactobacillus plantarum and Streptococcus thermophilus, which facilitate 5-HT and dopamine synthesis. Clinical trials reveal that 12 weeks of moderate exercise increases fecal Coprococcus and Blautia abundance, correlating with improved 5-HT bioavailability and reduced depression scores. Third, exercise normalizes HPA axis hyperactivity by reducing cortisol levels and restoring glucocorticoid receptor sensitivity. In rodent models, chronic stress-induced corticosterone elevation is reversed by probiotic supplementation (e.g., Lactobacillus), which enhances endocannabinoid signaling and hippocampal neurogenesis. Furthermore, exercise upregulates brain-derived neurotrophic factor (BDNF) via microbial metabolites like butyrate, promoting histone acetylation and synaptic plasticity. FMT experiments confirm that exercise-induced microbiota elevates prefrontal BDNF expression, reversing stress-induced neuronal atrophy. Fourth, exercise reshapes microbial metabolic crosstalk, diverting tryptophan metabolism toward 5-HT synthesis instead of neurotoxic kynurenine derivatives. Butyrate inhibits indoleamine 2,3-dioxygenase (IDO), a key enzyme in the kynurenine pathway linked to depression. Concurrently, exercise-induced Akkermansia enrichment enhances mucin production, fortifies the gut barrier, and reduces LPS-driven neuroinflammation. Collectively, these mechanisms underscore exercise as a potent modulator of the microbiota-gut-brain axis, offering a holistic approach to alleviating depression through microbial and neurophysiological synergy. Current evidence supports exercise as a potent adjunct therapy for depression, with personalized regimens (e.g., aerobic, resistance, or yoga) tailored to individual microbiota profiles. However, challenges remain in optimizing exercise prescriptions (intensity, duration, and type) and integrating them with probiotics, prebiotics, or FMT for synergistic effects. Future research should prioritize large-scale randomized controlled trials to validate causality, multi-omics approaches to decipher MGB axis dynamics, and mechanistic studies exploring microbial metabolites as therapeutic targets. The authors advocate for a paradigm shift toward microbiota-centric interventions, emphasizing the bidirectional relationship between physical activity and gut ecosystem resilience in mental health management. In conclusion, this review underscores exercise as a multifaceted modulator of the gut-brain axis, offering novel insights into non-pharmacological strategies for depression. By bridging microbial ecology, neuroimmunology, and exercise physiology, this work lays a foundation for precision medicine approaches targeting the gut microbiota to alleviate depressive disorders.
5.Analysis of risk factors for diaphragmatic dysfunction after cardiovascular surgery with extracorporeal circulation: A retrospective cohort study
Xupeng YANG ; Yi SHI ; Fengbo PEI ; Simeng ZHANG ; Hao MA ; Zengqiang HAN ; Zhou ZHAO ; Qing GAO ; Xuan WANG ; Guangpu FAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1140-1145
Objective To clarify the risk factors of diaphragmatic dysfunction (DD) after cardiac surgery with extracorporeal circulation. Methods A retrospective analysis was conducted on the data of patients who underwent cardiac surgery with extracorporeal circulation in the Department of Cardiovascular Surgery of Peking University People's Hospital from January 2023 to March 2024. Patients were divided into two groups according to the results of bedside diaphragm ultrasound: a DD group and a control group. The preoperative, intraoperative, and postoperative indicators of the patients were compared and analyzed, and independent risk factors for DD were screened using multivariate logistic regression analysis. Results A total of 281 patients were included, with 32 patients in the DD group, including 23 males and 9 females, with an average age of (64.0±13.5) years. There were 249 patients in the control group, including 189 males and 60 females, with an average age of (58.0±11.2) years. The body mass index of the DD group was lower than that of the control group [(18.4±1.5) kg/m2 vs. (21.9±1.8) kg/m2, P=0.004], and the prevalence of hypertension, chronic obstructive pulmonary disease, heart failure, and renal insufficiency was higher in the DD group (P<0.05). There was no statistical difference in intraoperative indicators (operation method, extracorporeal circulation time, aortic clamping time, and intraoperative nasopharyngeal temperature) between the two groups (P>0.05). In terms of postoperative aspects, the peak postoperative blood glucose in the DD group was significantly higher than that in the control group (P=0.001), and the proportion of patients requiring continuous renal replacement therapy was significantly higher than that in the control group (P=0.001). The postoperative reintubation rate, tracheotomy rate, mechanical ventilation time, and intensive care unit stay time in the DD group were higher or longer than those in the control group (P<0.05). Multivariate logistic regression analysis showed that low body mass index [OR=0.72, 95%CI (0.41, 0.88), P=0.011], preoperative dialysis [OR=2.51, 95%CI (1.89, 4.14), P=0.027], low left ventricular ejection fraction [OR=0.88, 95%CI (0.71, 0.93), P=0.046], and postoperative hyperglycemia [OR=3.27, 95%CI (2.58, 5.32), P=0.009] were independent risk factors for DD. Conclusion The incidence of DD is relatively high after cardiac surgery, and low body mass index, preoperative renal insufficiency requiring dialysis, low left ventricular ejection fraction, and postoperative hyperglycemia are risk factors for DD.
6.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
7. Effect of Qingshen granules on miR-23b and PINKl/Parkin pathway in rat NRK-52E cell transdifferentiation model
Hua JIN ; Lei ZHANG ; Yi-Ping WANG ; Hua JIN ; Ye-Qing ZHANG ; Qin HU ; Nuo CHEN ; Yan-Quan HAN
Chinese Pharmacological Bulletin 2024;40(1):162-170
Aim To investigate the targeting mechanism of miR-23b on PINKl/Parkin pathway in transdifferentiation of NRK-52E cellsinduced by TGF-β1, and to elucidate the intervention mechanism of Qingshen granules drug-containing serum on NRK-52E cell transdifferentiation. Methods Ultra-high performance liquid chromatography ( UPLC ) fingerprinting method was used to analyze Qingshen granules. The NRK-52E transdifferentiation model induced by TGF-β1 was constructed. The NRK-52E cells were divided into simulated no-load control group, miR-23b-5p simulated group, inhibitor no-load control group, and miR-23b-5p inhibitor group, after transfection with siRNA, and the effect of miR-23b-5p on PINK1 expression was ob-served. The NRK-52E cells were then divided into normal group, TGF-(31 group, Qingshen granule group, miR-23 b-mimic group, miR-23 b-mimic group, and miR-23b-mimic + Qingshen granule group. Western blot was used to detect the expression of Pinkl, Parkin, LC3 n, Beclin-1, P62 and a-SMA proteins, and RT- PCR was used to detect the expression of miR-23 b-5p, Pinkl, Parkin, Beclin-1 and a-SMA mRNA in NRK- 52E cells. Dual-Luciferase Reporter gene experiment was used to detect the targeting relationship between miR-23b-5p and PINKL Results UPLC fingerprinting method found 11 active components in Qingshen granules. After overexpression of miR-23b-5p, the expression of PINkl mRNA significantly increased (P < 0. 05). And after silencing of miR-23 b-5 p expression, the expression of PINkl mRNA also significantly decreased (P < 0. 05 ). Dual-Luciferase Reporter Assay showed that Rno-miR-23b-5p could significantly down- regulate the luciferase activity of Rno-PINKl-WT (P < 0. 05 ), but could not down-regulate the luciferase activity of mutant Rno-PINKl -mut ( P > 0. 05 ). The experimental results showed that the expressions of miR- 23b-5p, Pinkl, Parkin, Beclin-1, LC3 II and LC3 II/ I ratio in TGF-β1 group were significantly lower than those in normal group, but the expressions of P62 and a-SMA were significantly higher than those in normal group ( P <0.05). The expressions of miR-23 b-5 p, Pinkl, Parkin, Beclin-1, LC3 II and LC3 11/ I ratio in Qingshen granule group and miR-23 b-mimic group were significantly higher than those in TGF-β1 group, and the expressions of P62 and a-SMA were significantly lower than those in TGF-β1 group (P < 0. 05 ). The performance of miR-23 b-mimic + Qingshen granule group was better than that of miR-23 b-mimic group (P < 0. 05 ). Conclusions Qingshen granules can up- regulate the expression of miR-23b-5p in NRK-52E cellsand inhibit the transdifferentiation process of NRK- 52E cells by enhancing the mitochondrial autophagy activity mediated by PINKl/Parkin pathway.
8. Optimization and identification of a low density and high purity method for primary hippocampal neuron culture from fetal rats
Peng SU ; Xing-Yi WANG ; Jing-Yan LIANG ; Tian-Qing XIONG ; Jing-Yan LIANG ; Tian-Qing XIONG
Acta Anatomica Sinica 2024;55(1):113-119
Objective To establish a low density, high purity and high stability in vitro culture method of primary hippocampal neurons of fetal rats by co-culturing hippocampal and cortical cells, so as to obtain higher purity and better vitality of primary hippocampal neurons disease. Methods The fetal rat hippocampal tissue was isolated from 16-18 days pregnant SD rats, then cut and digested by 0.125% trypsin. The obtained cell suspension was filtered by 200 mesh cell sieve, and then the obtained cell suspensions were then inoculated into the inner layer and outer ring of the culture plate in a surrounding form. They were co-cultured in DMEM/F12 medium containing 10% horse serum. After 4-6 hours of cell adhesion, the culture medium was changed to maintenance medium (Neurobasal+2% B27+0.5 mmol/L glutamine). Then the cell viability was detected with CCK-8 kit and the purity of hippocampal neurons was detected by immunofluorescent staining. Results Hippocampal neurons grew well and formed crisscross neural networks after 5 days. And it could survive for 3 weeks. The purity of hippocampal neurons was up to 98%. Conclusion The method of co-culturing hippocampal and cortical cells can obtain high-purity, high activity, high survival rate, and high stability primary hippocampal neurons from fetal rats, which can provide certain experimental conditions for the study of hippocampal neuron related diseases in the nervous system and is worthy of promotion and application.
9.ATPR alleviates lipopolysaccharide-induced acute liver injury in mice by promoting autophagy
Chuanlin SHU ; Xiaorui SHI ; Rumeng ZHU ; Qing ZHOU ; Yuan WANG ; Yi WANG ; Huaqing ZHU
Acta Universitatis Medicinalis Anhui 2024;59(2):200-206
Objective To investigate the effect of4-amino-2-trifluoromethyl-phenyl retinate(ATPR)on acute liver injury induced by lipopolysaccharide(LPS)in C57BL/6 mice and its related mechanism.Methods Fifteen 6-week-old male C57BL/6 strain mice were randomly divided into normal group,model group and ATPR group,with 5 mice in each group.Mice in the ATPR group were intraperitoneally injected with ATPR(15 mg/kg·d),and normal group and model group were given solvent.After continuous administration for one week,model group and ATPR group were intraperitoneally injected with LPS(6 mg/kg),and all mice were sacrificed 6 hours later.The contents of Alanine aminotransferase(ALT)and Aspartate aminotransferase(AST)in serum of mice were detec-ted.The mRNA levels of Interleukin-6(IL-6)and Tumor necrosis factor-alpha(TNF-α)were detected by qPCR.Hematoxylin-eosin(H&E)staining was used to observe the histopathological changes of liver in mice.The ultra-structural changes of mouse hepatocytes were observed by Transmission electron microscope(TEM).The expres-sion levels of mitochondrial damage-related proteins FUNDC1 and OPA1 and autophagy related proteins LC3B,P62,Beclin1 and ATG5 were detected by Western blot.Results Compared with the normal group,the content of ALT and AST in serum and the mRNA levels of IL-6 and TNF-α in liver tissue increased in the model group,and the changes were reversed in the ATPR group.H&E staining showed that the hepatic lobule structure was normal in the normal group,the hepatic cords were arranged radially,there was no hyperemia and inflammatory cell infiltra-tion,and the hepatocyte boundary was clear.In the model group,the intercellular space of liver was enlarged,the arrangement of hepatic cords was disordered,and inflammatory cells infiltrated.In the ATPR group,the intercellu-lar space of liver and the structure of hepatic cords were restored,and the inflammatory cell infiltration was less.TEM showed that the damaged mitochondria and lipid droplet accumulation in the hepatocytes of mice in the model group were compared with that in the normal group,and the morphology and quantity of mitochondria and lipid droplet in the hepatocytes of mice in the ATPR group tended to be normal.Western blot showed that compared with the normal group,the expression of FUNDC1 protein in the liver tissues of mice in the model group increased,the expression of OPA1 protein decreased,the ratio of LC3B Ⅱ to LC3B Ⅰ decreased,the expression of P62 protein in-creased,the expression of Beclin1 and ATG5 protein decreased,and the above changes were reversed in the ATPR group.Conclusion ATPR alleviates acute liver injury induced by lipopolysaccharide in mice by promoting autoph-agy.
10.Clinicopathologic characteristics,gene mutation profile and prognostic analysis of thyroid diffuse large B-cell lymphoma
Zhishan DU ; Yue WANG ; Ziyang SHI ; Qing SHI ; Hongmei YI ; Lei DONG ; Li WANG ; Shu CHENG ; Pengpeng XU ; Weili ZHAO
Journal of Shanghai Jiaotong University(Medical Science) 2024;44(1):64-71
Objective·To analyze the clinicopathologic characteristics,gene mutation profile,and prognostic factors of thyroid diffuse large B-cell lymphoma(DLBCL).Methods·From November 2003 to December 2021,a total of 66 patients with thyroid DLBCL[23 cases(34.8%)with primary thyroid DLBCL,and 43 cases(65.2%)with secondary thyroid DLBCL]admitted to Ruijin Hospital,Shanghai Jiao Tong University School of Medicine were retrospectively analyzed for their clinicopathological data,survival and prognostic factors.Gene mutation profiles were evaluated by targeted sequencing(55 lymphoma-related genes)in 40 patients.Results·Compared to primary thyroid DLBCL,secondary thyroid DLBCL had advanced ratio of Ann Arbor stage Ⅲ?Ⅳ(P=0.000),elevated serum lactate dehydrogenase(LDH)(P=0.043),number of affected extranodal involvement≥2(P=0.000),non-germinal center B cell(non-GCB)(P=0.030),BCL-2/MYC double expression(DE)(P=0.026),and international prognostic index(IPI)3?5-scores(P=0.000).The proportion of patients who underwent thyroid surgery(P=0.012)was lower than that of patients with primary thyroid DLBCL.The complete remission(CR)rate in primary thyroid DLBCL patients was higher than that in secondary thyroid DLBCL patients(P=0.039).Fifty-five patients(83%)received rituximab combined with cyclophosphamide,doxorubicin,vincristine,and prednisone(R-CHOP)-based first-line regimen.The estimated 5-year progression free survival(PFS)rate of primary thyroid DLBCL patients was 95.0%,higher than the 49.7%of the secondary patients(P=0.010).Univariate analysis showed that Ann Arbor Ⅲ?Ⅳ(HR=4.411,95%CI 1.373?14.170),elevated LDH(HR=5.500,95%CI 1.519?19.911),non-GCB(HR= 5.291,95%CI 1.667?16.788),and DE(HR=6.178,95%CI 1.813?21.058)were adverse prognostic factors of PFS in patients with thyroid DLBCL.Ann Arbor Ⅲ?Ⅳ(HR=7.088,95%CI 0.827?60.717),elevated LDH(HR=6.982,95%CI 0.809?60.266),and DE(HR=18.079,95%CI 1.837?177.923)were adverse prognostic factors of overall survival(OS).Multivariate analysis showed that Ann Arbor Ⅲ?Ⅳ(HR=4.693,95%CI 1.218?18.081)and elevated LDH(HR=5.058,95%CI 1.166?21.941)were independent adverse prognostic factors of PFS in patients with thyroid DLBCL.Targeted sequencing data showed mutation frequency>20%in TET2(n=14,35%),KMT2D(n=13,32%),TP53(n=11,28%),GNA13(n=10,25%),KMT2C(n=9,22%),and TP53 were adverse prognostic factors of PFS in patients with thyroid DLBCL(P=0.000).Conclusion·Patients with primary thyroid DLBCL have better PFS and OS than those with secondary thyroid DLBCL.Ann Arbor Ⅲ?Ⅳ,elevated LDH,non-GCB,and DE(MYC and BCL2)are adverse prognostic factors in thyroid DLBCL.TET2,KMT2D,TP53,GNA13,and KMT2C are commonly highly mutated genes in thyroid DLBCL,and the prognosis of patients with TP53 mutations is poor.

Result Analysis
Print
Save
E-mail