1.Influencing factors and construction of a nomogram predictive model for postoperative anastomotic leak in patients with carcinoma of the esophagus and gastroesophageal junction
Hao PENG ; Siqi SHENG ; Jing CHEN ; Maitiasen MAIRHABA ; Haizhu SONG ; Jun YI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):208-215
Objective To analyze the influencing factors for postoperative anastomotic leak (AL) in carcinoma of the esophagus and gastroesophageal junction and construct a nomogram predictive model. Methods The patients who underwent radical esophagectomy at Jinling Hospital Affiliated to Nanjing University School of Medicine from January 2018 to June 2020 were included in this study. Relevant variables were screened using univariate and multivariate logistic regression analyses. A nomogram was then developed to predict the risk factors associated with postoperative AL. The predictive performance of the nomogram was validated using the receiver operating characteristic (ROC) curve. Results A total of 468 patients with carcinoma of the esophagus and gastroesophageal junction were included in the study, comprising 354 males and 114 females, with a mean age of (62.8±7.2) years. The tumors were predominantly located in the middle or lower esophagus, and 51 (10.90%) patients experienced postoperative AL. Univariate logistic regression analysis indicated that age, body mass index (BMI), tumor location, preoperative albumin levels, diabetes mellitus, anastomosis technique, anastomosis site, and C-reactive protein (CRP) levels were potentially associated with AL (P<0.05). Multivariate logistic regression analysis identified age, BMI, tumor location, diabetes mellitus, anastomosis technique, and CRP levels as independent risk factors for AL (P<0.05). A nomogram was developed based on the findings from the multivariate logistic regression analysis. The area under the receiver operating characteristic (ROC) curve was 0.803, indicating a strong concordance between the actual observations and the predicted outcomes. Furthermore, decision curve analysis demonstrated that the newly established nomogram holds significant value for clinical decision-making. Conclusion The predictive model for postoperative AL in patients with carcinoma of the esophagus and gastroesophageal junction demonstrates strong predictive validity and is essential for guiding clinical monitoring, early detection, and preventive strategies.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Baseline Impedance via Manometry Predicts Pathological Mean Nocturnal Baseline Impedance in Isolated Laryngopharyngeal Reflux Symptoms
Yen-Ching WANG ; Chen-Chi WANG ; Chun-Yi CHUANG ; Yung-An TSOU ; Yen-Chun PENG ; Chi-Sen CHANG ; Han-Chung LIEN
Journal of Neurogastroenterology and Motility 2025;31(1):63-74
Background/Aims:
Distal mean nocturnal baseline impedance (MNBI) measuring via pH-impedance may be valuable in diagnosing patients with suspected laryngopharyngeal reflux (LPR). However, its wide adoption is hindered by cost and invasiveness. This study investigates whether baseline impedance measured during high-resolution impedance manometry (HRIM-BI) can predict pathological MNBI.
Methods:
A cross-sectional study in Taiwan included 74 subjects suspected of LPR, who underwent HRIM (MMS) and pH-impedance testing (Diversatek), after stopping proton pump inhibitors for more than 7 days. Subjects with grade C or D esophagitis or Barrett’s esophagus were excluded. The cohort was divided into 2 groups: those with concomitant typical reflux symptoms (CTRS, n = 28) and those with isolated LPR symptoms (ILPRS, n = 46). HRIM-BI measurements focused on both distal and proximal esophagi. Pathological MNBI was identified as values below 2065 Ω, measured 3 cm above the lower esophageal sphincter.
Results:
In all subjects, distal HRIM-BI values correlated weakly with distal MNBI(r = 0.34-0.39, P < 0.005). However, in patients with ILPRS, distal HRIM-BI corelated moderately with distal MNBI(r = 0.43-0.48, P < 0.005). The areas under the receiver operating characteristic curve was 0.78 (P = 0.001) with a sensitivity of 0.83 and a specificity of 0.68. No correlation exists between distal HRIM-BI and distal MNBI in patients with CTRS, and between proximal HRIM-BI and proximal MNBI in both groups.
Conclusions
Distal HRIM-BI from HRIM may potentially predict pathological MNBI in patients with ILPRS, but not in those with CTRS. Future outcome studies linked to the metric are warranted.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Baseline Impedance via Manometry Predicts Pathological Mean Nocturnal Baseline Impedance in Isolated Laryngopharyngeal Reflux Symptoms
Yen-Ching WANG ; Chen-Chi WANG ; Chun-Yi CHUANG ; Yung-An TSOU ; Yen-Chun PENG ; Chi-Sen CHANG ; Han-Chung LIEN
Journal of Neurogastroenterology and Motility 2025;31(1):63-74
Background/Aims:
Distal mean nocturnal baseline impedance (MNBI) measuring via pH-impedance may be valuable in diagnosing patients with suspected laryngopharyngeal reflux (LPR). However, its wide adoption is hindered by cost and invasiveness. This study investigates whether baseline impedance measured during high-resolution impedance manometry (HRIM-BI) can predict pathological MNBI.
Methods:
A cross-sectional study in Taiwan included 74 subjects suspected of LPR, who underwent HRIM (MMS) and pH-impedance testing (Diversatek), after stopping proton pump inhibitors for more than 7 days. Subjects with grade C or D esophagitis or Barrett’s esophagus were excluded. The cohort was divided into 2 groups: those with concomitant typical reflux symptoms (CTRS, n = 28) and those with isolated LPR symptoms (ILPRS, n = 46). HRIM-BI measurements focused on both distal and proximal esophagi. Pathological MNBI was identified as values below 2065 Ω, measured 3 cm above the lower esophageal sphincter.
Results:
In all subjects, distal HRIM-BI values correlated weakly with distal MNBI(r = 0.34-0.39, P < 0.005). However, in patients with ILPRS, distal HRIM-BI corelated moderately with distal MNBI(r = 0.43-0.48, P < 0.005). The areas under the receiver operating characteristic curve was 0.78 (P = 0.001) with a sensitivity of 0.83 and a specificity of 0.68. No correlation exists between distal HRIM-BI and distal MNBI in patients with CTRS, and between proximal HRIM-BI and proximal MNBI in both groups.
Conclusions
Distal HRIM-BI from HRIM may potentially predict pathological MNBI in patients with ILPRS, but not in those with CTRS. Future outcome studies linked to the metric are warranted.
7.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
8.Comparison of small-sample multi-class machine learning models for plasma concentration prediction of valproic acid
Xi CHEN ; Shen’ao YUAN ; Hailing YUAN ; Jie ZHAO ; Peng CHEN ; Chunyan TIAN ; Yi SU ; Yunsong ZHANG ; Yu ZHANG
China Pharmacy 2025;36(11):1399-1404
OBJECTIVE To construct three-class (insufficient, normal, excessive) and two-class (insufficient, normal) models for predicting plasma concentration of valproic acid (VPA), and compare the performance of these two models, with the aim of providing a reference for formulating clinical medication strategies. METHODS The clinical data of 480 patients who received VPA treatment and underwent blood concentration test at the Xi’an International Medical Center Hospital were collected from November 2022 to September 2024 (a total of 695 sets of data). In this study, predictive models were constructed for target variables of three-class and two-class models. Feature ranking and selection were carried out using XGBoost scores. Twelve different machine learning algorithms were used for training and validation, and the performance of the models was evaluated using three indexes: accuracy, F1 score, and the area under the working characteristic curve of the subject (AUC). RESULTS XGBoost feature importance scores revealed that in the three-class model, the importance ranking of kidney disease and electrolyte disorders was higher. However, in the two-class model, the importance ranking of these features significantly decreased, suggesting a close association with the excessive blood concentration of VPA. In the three-class model, Random Forest method performed best, with F1 score of 0.704 0 and AUC of 0.519 3 on the test set; while in the two-class model, CatBoost method performed optimally, with F1 score of 0.785 7 and AUC of 0.819 5 on the test set. CONCLUSIONS The constructed three-class model has the ability to predict excessive VPA blood concentration, but its prediction and model generalization abilities are poor; the constructed two-class model can only perform classification prediction for insufficient and normal blood concentration cases, but its model performance is stronger.
9.Baseline Impedance via Manometry Predicts Pathological Mean Nocturnal Baseline Impedance in Isolated Laryngopharyngeal Reflux Symptoms
Yen-Ching WANG ; Chen-Chi WANG ; Chun-Yi CHUANG ; Yung-An TSOU ; Yen-Chun PENG ; Chi-Sen CHANG ; Han-Chung LIEN
Journal of Neurogastroenterology and Motility 2025;31(1):63-74
Background/Aims:
Distal mean nocturnal baseline impedance (MNBI) measuring via pH-impedance may be valuable in diagnosing patients with suspected laryngopharyngeal reflux (LPR). However, its wide adoption is hindered by cost and invasiveness. This study investigates whether baseline impedance measured during high-resolution impedance manometry (HRIM-BI) can predict pathological MNBI.
Methods:
A cross-sectional study in Taiwan included 74 subjects suspected of LPR, who underwent HRIM (MMS) and pH-impedance testing (Diversatek), after stopping proton pump inhibitors for more than 7 days. Subjects with grade C or D esophagitis or Barrett’s esophagus were excluded. The cohort was divided into 2 groups: those with concomitant typical reflux symptoms (CTRS, n = 28) and those with isolated LPR symptoms (ILPRS, n = 46). HRIM-BI measurements focused on both distal and proximal esophagi. Pathological MNBI was identified as values below 2065 Ω, measured 3 cm above the lower esophageal sphincter.
Results:
In all subjects, distal HRIM-BI values correlated weakly with distal MNBI(r = 0.34-0.39, P < 0.005). However, in patients with ILPRS, distal HRIM-BI corelated moderately with distal MNBI(r = 0.43-0.48, P < 0.005). The areas under the receiver operating characteristic curve was 0.78 (P = 0.001) with a sensitivity of 0.83 and a specificity of 0.68. No correlation exists between distal HRIM-BI and distal MNBI in patients with CTRS, and between proximal HRIM-BI and proximal MNBI in both groups.
Conclusions
Distal HRIM-BI from HRIM may potentially predict pathological MNBI in patients with ILPRS, but not in those with CTRS. Future outcome studies linked to the metric are warranted.
10.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.

Result Analysis
Print
Save
E-mail