1.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis
Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
Five saponins were isolated from the kernels of
2.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
3. The molecular mechanism of spleen-strengthening and moisture-nourishing liver prescription in treatment of acute-on-chronic liver failure based on network pharmacology and experimental verification
Qi HUANG ; Wen-Feng MA ; Zhi-Yi HAN ; Jia-Ling SUN ; Wei ZHANG ; Xin-Feng SUN ; Jian -Ping CHEN ; Xiao-Zhou ZHOU ; Qi HUANG ; Wen-Feng MA ; Zhi-Yi HAN ; Jia-Ling SUN ; Wei ZHANG ; Xin-Feng SUN ; Xiao-Zhou ZHOU ; Jing LI ; Xiao-Zhou ZHOU ; Jian -Ping CHEN
Chinese Pharmacological Bulletin 2024;40(3):557-564
To explore the mechanism of spleen- were obtained for the treatment of acute-on-chronic livstrengthening and moisture-nourishing liver prescription er failure, and 244 intersecting target genes and 7 core (JPLSYGF) in the treatment of acute-on-chronic liver target genes were screened. Molecular docking showed failure using network pharmacology and the molecular that the core target genes AKT1, SRC, VEGFA, docking. Methods Relying on TCMSP and Gene- STAT3 , EGFR, MAPK3 , HRAS had good affinity with Cards and other databases, the relevant targets of JPL- quercetin, the main active component in the JPLSYGF in the treatment of acute-on-chronic liver failure SYGF, and had strong binding activity. In addition, in were obtained. String and Cytoscape were used to con- vivo tests verified that the JPLSYGF could reduce the struct PPI networks of targets, core targets were expression of HRAS, EGFR, STAT3 , SRC, and VEGscreened out, and DAVID was used for GO function FA, to delay the progression of acute-on-chronic liver annotation and KEGG pathway enrichment analysis. failure. Conclusions JPLSYGF may act on core tar- The main active ingredients of the traditional Chinese gets such as HRAS, EGFR, STAT3, SRC, VEGFA medicine compound formula for JPLSYGF were select- and so on, to achieve the effect of treating acute-oned with a bioavailability OB value of =Э 30% and a chronic liver failure. drug-like DL^O. 18 as the screening conditions, and.
4.The relationship between activities of daily living and mental health in community elderly people and the mediating role of sleep quality
Heng-Yi ZHOU ; Jing LI ; Dan-Hua DAI ; Yang LI ; Bin ZHANG ; Rong DU ; Rui-Long WU ; Jia-Yan JIANG ; Yuan-Man WEI ; Jing-Rong GAO ; Qi ZHAO
Fudan University Journal of Medical Sciences 2024;51(2):143-150
Objective To explore the relationship and internal path between activities of daily living(ADL),sleep quality and mental health of community elderly people in Shanghai.Methods A questionnaire survey was conducted among community residents aged 60 years and older seeing doctors in community health care center of five streets in Shanghai during Sept to Dec,2021 using convenience sampling.Activities of Daily Living(ADL),Pittsburgh Sleep Quality Index(PSQI)and 10-item Kessler Psychological Distress Scale(K10)were adopted in the survey.Single factor analysis,correlation analysis and multiple linear regression were used to analyze the data.The effect relationship between the variables was tested using Bootstrap's mediated effects test.Results A total of 1 864 participants were included in the study.The average score was 15.53±4.47 for ADL,5.60±3.71 for PSQI and 15.50±6.28 for K10.The rate of ADL impairment,poor sleep quality,poor and very poor mental health of the elderly were 23.6%,27.3%,11.9%and 4.9%,respectively.ADL and sleep quality were all positively correlated with mental health(r=0.321,P<0.001;r=0.466,P<0.001);ADL was positively correlated with sleep quality(r=0.294,P<0.001).Multiple linear results of factors influencing mental health showed that ADL(β= 0.457,95%CI:0.341-0.573),sleep quality(β =0.667,95%CI:0.598-0.737)and mental health were positively correlated(P<0.001).Sleep quality partially mediated the relationship between ADL and mental health(95%CI:0.078-0.124)with an effect size of 33.0%.Conclusion Sleep quality is a mediator between ADL and mental health among community elderly people.Improving ADL and sleep quality may improve mental health in the population.
5.Correlation between insomnia,gastrointestinal symptoms,and glycated hemoglobin in patients with type 2 diabetes:a cross-sectional study based on the co-management platform of three disciplines of diabetes
Bo LI ; Qi YUAN ; Yongfa WANG ; Youjian FENG ; Guimiao WANG ; Weidong NIAN ; Yi ZHOU ; Tianchi HU ; Sisi MA ; Liyan JIA ; Zhihai ZHANG ; Jin LI ; Bing YAN ; Nengjiang ZHAO ; Shuyu YANG
Journal of Beijing University of Traditional Chinese Medicine 2024;47(7):989-997
Objective To investigate the relationship between insomnia,gastrointestinal symptoms,and glycosylated hemoglobin(HbA1c)levels in individuals diagnosed with type 2 diabetes mellitus(T2DM),as well as the related influencing factors.Methods A total of 910 T2DM patients treated in our multicenter from January 2022 to December 2022 were enrolled in this study.General information(gender,age,smoking and drinking history,exercise,course of disease,treatment and complications),HbA1c,Athens Insomnia Scale(AIS)scores and Gastrointestinal Symptoms Rating Scale(GSRS)scores of patients were collected.The differences of sleep and gastrointestinal symptoms between groups were analyzed,and the correlation between the differences and HbA1c was analyzed.Furthermore,the risk factors for non-standard HbA1c were analyzed.Results The AIS score and GSRS score in the HbA1c control group were less than those in the non-standard group(P<0.01).Insomnia was reported by 37.0%of T2DM patients,and the HbA1c level in the insomnia group was significantly higher than that in the non-insomnia group(10.00%±2.38%vs.8.26%±1.73%,P<0.01).Gastrointestinal symptoms were present in 57.5%of T2DM patients,and the HbA1c levels in the group with gastrointestinal symptoms were significantly higher than those in the group without gastrointestinal symptoms(9.26%±2.23%vs.8.43%±1.98%,P<0.01).Furthermore,26.3%of T2DM patients experienced both insomnia and gastrointestinal symptoms.Remarkably,the HbA1c levels in the group with both insomnia and gastrointestinal symptoms were significantly higher than those in the group without either condition(10.18%±2.44%vs.8.45%±1.86%,P<0.01).Correlation analysis demonstrated a significant association between sleep quality,gastrointestinal function,and HbA1c levels(P<0.01).The logistic regression analysis result revealed that age,GSRS score,AIS score,and the presence of insomnia combined with gastrointestinal symptoms were independent risk factors for predicting HbA1c≥6.5%(P<0.01).Having both insomnia and gastrointestinal symptoms concurrently was the strongest risk factor for substandard HbA1c control,and the risk of blood sugar control may increase about 5 times when both appear together.Conclusion Insomnia and gastrointestinal symptoms are common comorbidities in T2DM patients,showing a cross-interfering relationship,and they appear together with poor blood sugar control,interact causally,and amplify each other.
6.Biosynthesis and Application of Sugar Nucleotides
Meng HAO ; Jia-Qi LIAN ; Cui-Lu ZHANG ; Wan-Yi GUAN
Progress in Biochemistry and Biophysics 2024;51(4):822-838
Glycosylation is one of the most important reactions in living organisms as it results in the formation of glycoconjugates with diverse biological functions. Sugar nucleotides are structurally composed of sugar and nucleoside diphosphate or monophosphate, which are widespread within a variety of biological cells. As glycosyl donors for the transglycosyl reactions catalyzed by Leloir-type glycosyltransferases, sugar nucleotides are essential for the synthesis of glycans and glycoconjugates. However, high costs and limited availability of nucleotide sugars prevent applications of biocatalytic cascades on an industrial scale. Therefore, attentions on synthetic strategies of sugar nucleotides have been increasing to achieve their wide applications in various fields. The 9 common sugar nucleotides in mammals have been fully studied with large-scale synthesis through chemical, enzymatic (chemo-enzymatic) and cell factory strategies. In addition to common sugar nucleotides, many rare sugar nucleotides are present in plants and bacteria. Although unnatural sugar nucleotides cannot be synthesized in organisms, they have great potential in research as substrates for glycosyltransferases in carbohydrate synthesis, as enzyme inhibitors in biochemical studies, and as components of glycoconjugate biosynthesis. Therefore, increasing attention has been paid to explore the efficient synthesis of unnatural sugar nucleotides. Currently, strategies for chemical synthesis of sugar nucleotides have been greatly improved, such as the use of effective catalysts for forming pyrophosphate bonds and the development of entirely new synthesis protocols. Multiple sugar nucleotides, especially unnatural sugar nucleotides, are synthesized chemically. However, chemical synthesis requires tedious protection and deprotection steps, resulting in complex steps, high cost and low yield. In contrast, enzymatic (chemo-enzymatic) and cell factory methods have significant advantages such as high yield, easy operation and easy process scale-up in the preparation of sugar nucleotides. Hence, they are prominent strategies for sugar nucleotide preparation. Herein, the biosynthesis and application of sugar nucleotides are reviewed, mainly focusing on the 9 sugar nucleotides common in mammals. The early strategies for enzymatic synthesis of sugar nucleotides generally used de novo synthesis pathway. With the discoveries of enzymes involved in salvage pathway of sugar nucleotide synthesis and the development of one-pot multienzyme (OPME) method, the synthesis of sugar nucleotides was greatly simplified. Cell factory method employs the microbial living cells as a “processing plant” by engineering their metabolic pathways through genetic engineering technology. The cell factory method has high yield, and has been applied for efficient synthesis of several sugar nucleotides. Moreover, the strategy of gram-scale synthesis of multiple rare sugar nucleotides by cascade reactions from common sugar nucleotides using sugar nucleotides synthases cloned from different sources was illustrated. In recent years, the synthesis cost of sugar nucleotides has been further reduced through various ways, such as regeneration of nucleotides, regeneration of organic cofactors, and application of immobilized enzyme technology. Furthermore, through the continuous improvement of sugar nucleotide purification process, the use of high concentration of multi-enzyme cascade and rapid non-chromatographic purification process, the synthesis of multiple sugar nucleotides and their derivatives from monosaccharides was achieved, which gradually broke the limitations of the existing strategy. With the efficient synthesis of sugar nucleotides, their applications in various fields have been increasingly explored, including the synthesis of glycans and glycoconjugates, biochemical characterization of glycosyltransferases and bioorthogonal labeling strategies, which are of great significance to the research of biochemistry, glycobiology and the development of related pharmaceutical products.
7.Effect and mechanism of dandelion flavonoids in alleviating lipopolysaccharide-induced colon epithelial cell injury
Jia-Qi ZHANG ; Dong-Xue MEI ; Sha LI ; Sheng-Gai GAO ; Jia ZHENG ; Hong-Xia LIANG ; Yi WANG
The Chinese Journal of Clinical Pharmacology 2024;40(4):549-553
Objective To investigate the protective effect of dandelion flavone(DF)on lipopolysaccharide(LPS)-induced colon epithelial cell injury by intervening oxidative stress and inflammation with AT-specific binding protein 2(SATB2).Methods Colon epithelial cells FHC were cultured.FHC cells were randomly divided into control group(normal cultured),LPS group(10 μg·mL-1 LPS),experimental-L group(10 μg·mL-1 LPS+1 μmol·L-1 DF),experimental-H group(10 μg·mL-1 LPS+5 μmol·L-1 DF),experimental-H+sh-NC group(transfected with sh-NC+10 μg·mL-1 LPS+5 μmol·mL-1 DF),experimental-H+sh-SATB2 group(transfected with sh-SATB2+10 μg·mL-1 LPS+5μmol·L-1 DF).The relative expression level of SATB2 protein in FHC cells was detected by Western blotting.The survival rate of FHC cells in each group was determined by tetramethylazolium blue(MTT).The apoptosis rate of FHC cells in each group was detected by flow cytometry.The levels of malondialdehyde(MDA)and interleukin-6(IL-6)in FHC cells were detected by the kit.Results The relative expression levels of SATB2 protein in control group,LPS group,experimental-H group,experimental-H+sh-NC group and experimental-H+sh-SATB2 group were 0.83±0.09,0.19±0.03,0.66±0.05,0.62±0.07 and 0.23±0.03,respectively;cell viability rates were(100.00±1.00)%,(48.16±4.31)%,(85.31±5.83)%,(81.39±6.47)%and(58.75±5.24)%,respectively;cell apoptosis rates were(3.27±0.81)%,(41.26±2.09)%,(11.35±1.04)%,(10.29±1.26)%and(35.87±2.15)%,respectively;MDA levels were(13.16±1.73),(52.87±3.49),(23.19±2.05),(20.98±3.17)and(44.87±3.05)μmol·L-1,respectively;IL-6 levels were(507.18±103.26),(2 132.09±198.15),(883.16±136.92),(801.69±119.85)and(1 736.29±206.91)pg·mL-1,respectively.The above indicators in the LPS group showed significant differences compared to the control group(all P<0.05);the above indicators in the experimental-H group showed significant differences compared to the LPS group(all P<0.05);the above indicators in the experimental-H+sh-SATB2 group showed significant differences compared to the experimental-H+sh-NC group(all P<0.05).Conclusion DF has a protective effect on LPS-induced colon epithelial cell injury by intervening oxidative stress and inflammation through SATB2.
8.Effects of cinbufagin on proliferation,migration and invasion of human colon cancer cells via JAK2/STAT3 pathway
Jia CHEN ; Qi XIA ; Yi-Nan LI ; Yu-Jie HE ; Ze-Ting YUAN ; Yue LI ; Pei-Hao YIN
The Chinese Journal of Clinical Pharmacology 2024;40(12):1764-1768
Objective To investigate the effects of cinbufagin(CB)on the proliferation,migration and invasion ability as well as epithelial-mesenchymal transition(EMT)of human colon cells HCT116.Methods Logarithmically grown HCT116 cells were randomly divided into blank group and experimental-L,-M,-H groups;the blank group did not receive any treatment(0 nmol·L-1),and experimental-L,-M,-H groups were cultured in 1 640 medium containing 17.5,35 and 70 nmol·L-1 cinbufagin for 48 h.Cell counting kit-8(CCK-8)was used to detect the effect of cinbufagin on the survival rate of HCT116 cells;cloning assay was used to detect the effect of cinbufagin on the proliferation of HCT116 cells;cell scratch assay and Transwell assay were used to detect the effect of cinbufagin on the migration and invasive ability of HCT116 cells;Western blot was used to detect the expression levels of janus kinase 2(JAK2)/signal transducers and activators of transcription 3(STAT3)pathway and EMT-related proteins of HCT116 cells.Results The number of clone formation in blank group and experimental-L,-M,-H groups were 122.67±24.42,73.67±15.82,44.33±4.51 and 21.67±1.53;the rates of migration of scratches were(44.64±9.15)%,(26.91±2.94)%,(19.28±1.52)%and(6.33±2.30)%;the number of invaded cells were 120.33±1.15,58.33±9.07,33.33±1.53 and 18.33±3.21;the relative protein expression of phosphorylated JAK-2(p-JAK-2)/JAK-2 were 1.02±0.06,0.94±0.05,0.75±0.22 and 0.49±0.22;relative protein expression of phosphorylated STAT3(p-STAT3)/STAT3 were 0.89±0.10,0.72±0.04,0.65±0.06 and 0.52±0.18;relative protein expression of E-cadherin were 0.30±0.14,0.41±0.13,0.49±0.14 and 0.69±0.17;relative protein expression of N-cadherin were 0.96±0.11,0.78±0.04,0.69±0.12 and 0.40±0.15;Snail relative protein expression were 0.89±0.08,0.62±0.15,0.44±0.15 and 0.27±0.09;Vimentin relative protein expression were 0.92±0.09,0.76±0.13,0.63±0.01 and 0.43±0.09,respectively.The above indexes in experimental-H group showed statistically significant differences compared to blank group(all P<0.05).Conclusion HCT116 can inhibit the invasion and metastasis of human colorectal cancer cells HCT116 by inhibiting epithelial-mesenchymal transition through JAK2/STAT3 pathway.
9.Effects of sodium acetate on lowering uric acid and renal protection in mice with hyperuricemic nephropathy
Xue-Man LIN ; Shi-Qi ZHONG ; Yong-Mei LI ; Xiao-Yi QIN ; He-Yang JIANG ; Jia-Xin ZHOU ; Jian-Xin PANG ; Ting WU
The Chinese Journal of Clinical Pharmacology 2024;40(15):2222-2226
Objective To investigate the renal protective effect and mechanism of sodium acetate(Ace)on hyperuricemic nephropathy(HN)in mice.Methods Uric acid nephropathy mice model was prepared by intraperitoneal injection of potassium oxonate combined with adenine gavage.Mice were divided into blank control group(0.9%NaCl+0.5%carboxymethyl cellulose sodium),Ace group(200 mmol·L-1 Ace+0.5%carboxymethyl cellulose sodium),model group(0.9%NaCl+350 mg·kg-1 potassium oxonate+70 mg·kg-1 adenine),and experimental group(based on model group with additional 200 mmol·L-1 Ace).Serum and urine uric acid(UA)and serum creatinine(SCr)levels were observed in each group.Real-time fluorescence quantitative reverse transcription-polymerase chain reaction(qRT-PCR)was used to detect the expression levels of kidney injury molecule-1(Kim-1)and anti-aging gene Klotho,renal fibrosis markers Collagen Ⅰ and Fibronectin,intestinal inflammation-related factors interleukin-1 β(IL-1 β),and mRNA expression levels of tight junction proteins Zo-1.Results The serum UA levels of blank control group,Ace group,model group,and experimental group mice were(259.52±24.40),(227.71±35.91),(604.06±73.55),and(496.24±30.16)μmol·L-1,respectively;SCr levels were(16.85±0.40),(16.18±0.94),(22.38±1.56),and(19.78±1.43)μmol·L-1;Kim-1 mRNA relative expression levels were 1.04±0.25,1.17±0.28,13.00±2.87,and 4.24±3.92;Klotho mRNA relative expression levels were 1.04±0.15,1.02±0.18,0.43±0.12,and 0.69±0.12;Collagen Ⅰ mRNA relative expression levels were 1.05±0.15,1.02±0.18,3.19±1.09,and 1.61±0.55;Fibronectin mRNA relative expression levels were 1.07±0.18,1.02±0.25,7.86±2.40,and 3.34±2.10;intestinal IL-1β mRNA relative expression levels were 1.00±0.01,1.01±0.03,2.55±0.63,and 1.21±0.28;intestinal Zo-1 mRNA relative expression levels were 1.00±0.07,1.07±0.09,0.54±0.20,and 0.92±0.17.The above indicators in blank control group compared with model group,and experimental group compared with model group,all showed statistically significant differences(P<0.05,P<0.01,P<0.001).Conclusion Sodium acetate can effectively reduce UA levels in HN mice,significantly improve renal injury and fibrosis,and its mechanism may be related to the improvement of intestinal inflammatory response and up-regulation of intestinal Zo-1/Occuludin pathway to reduce intestinal mucosal permeability.
10.The expression mechanism of programmed cell death 1 ligand 1 and its role in immunomodulatory ability of mesenchymal stem cells
Zhuo CHEN ; Meng-Wei YAO ; Xiang AO ; Qing-Jia GONG ; Yi YANG ; Jin-Xia LIU ; Qi-Zhou LIAN ; Xiang XU ; Ling-Jing ZUO
Chinese Journal of Traumatology 2024;27(1):1-10
Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.

Result Analysis
Print
Save
E-mail