1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6. Effects of metabolites of eicosapentaenoic acid on promoting transdifferentiation of pancreatic OL cells into pancreatic β cells
Chao-Feng XING ; Min-Yi TANG ; Qi-Hua XU ; Shuai WANG ; Zong-Meng ZHANG ; Zi-Jian ZHAO ; Yun-Pin MU ; Fang-Hong LI
Chinese Pharmacological Bulletin 2024;40(1):31-38
Aim To investigate the role of metabolites of eicosapentaenoic acid (EPA) in promoting the transdifferentiation of pancreatic α cells to β cells. Methods Male C57BL/6J mice were injected intraperitoneally with 60 mg/kg streptozocin (STZ) for five consecutive days to establish a type 1 diabetes (T1DM) mouse model. After two weeks, they were randomly divided into model groups and 97% EPA diet intervention group, 75% fish oil (50% EPA +25% DHA) diet intervention group, and random blood glucose was detected every week; after the model expired, the regeneration of pancreatic β cells in mouse pancreas was observed by immunofluorescence staining. The islets of mice (obtained by crossing GCG
7.Cloning and gene functional analysis study of dynamin-related protein GeDRP1E gene in Gastrodia elata
Xin FAN ; Jian-hao ZHAO ; Yu-chao CHEN ; Zhong-yi HUA ; Tian-rui LIU ; Yu-yang ZHAO ; Yuan YUAN
Acta Pharmaceutica Sinica 2024;59(2):482-488
The gene
8.Severity of loneliness and factors associated with social and emotional loneliness among the elderly in three districts in Shanghai
Yu-Wen ZHANG ; Ying WANG ; Zhao-Hua XIN ; Jia-Lie FANG ; Rui SONG ; Hao-Cen LI ; Jia-Wen KUANG ; Yu-Ting YANG ; Jing-Yi WANG
Fudan University Journal of Medical Sciences 2024;51(1):1-11
Objective To explore the severity of loneliness among the elderly in communities in Shanghai,and to identify factors associated with social and emotional loneliness respectively.Methods A cross-sectional study was conducted in older adults aged 65 years or above in Pudong New Area,Jing'an District and Huangpu District in Shanghai from Mar to Jun 2021.In Pudong New Area,multi-stage stratified random sampling was conducted based on the age and gender distribution of Shanghai,while in Huangpu District and Jing'an District convenience sampling was conducted.A total of 635 samples were included in the study.Loneliness was assessed using the De Jong Gierveld Loneliness Scale with social and emotional loneliness subscales.Logistic regression analyses were conducted to identify factors associated with social and emotional loneliness.Results Among the 635 participants,only 53 older adults(8.4%)were not lonely.Female(OR=0.46,95%CI:0.31-0.70),higher self-efficacy(OR=0.97,95%CI:0.94-1.00),more objective social support(OR=0.96,95%CI:0.93-0.99)were associated with less severe social loneliness.Meanwhile,higher level of education(secondary education,OR=0.56,95%CI:0.34-0.95;college or above,OR=0.30,95%CI:0.11-0.83)and higher self-efficacy(OR=0.96,95%CI:0.93-0.99)were associated with less severe emotional loneliness,while depression(OR=3.41,95%CI:1.76-6.60)and worse social capital(OR=2.02,95%CI:1.29-3.16)were associated with more severe emotional loneliness.Conclusion Up to 91.6%of the elderly in our study sample were moderately lonely or above.The factors associated with social loneliness include self-efficacy,gender and social support.The factors associated with emotional loneliness are self-efficacy,education level,depression,and social capital.
9.The relationship between activities of daily living and mental health in community elderly people and the mediating role of sleep quality
Heng-Yi ZHOU ; Jing LI ; Dan-Hua DAI ; Yang LI ; Bin ZHANG ; Rong DU ; Rui-Long WU ; Jia-Yan JIANG ; Yuan-Man WEI ; Jing-Rong GAO ; Qi ZHAO
Fudan University Journal of Medical Sciences 2024;51(2):143-150
Objective To explore the relationship and internal path between activities of daily living(ADL),sleep quality and mental health of community elderly people in Shanghai.Methods A questionnaire survey was conducted among community residents aged 60 years and older seeing doctors in community health care center of five streets in Shanghai during Sept to Dec,2021 using convenience sampling.Activities of Daily Living(ADL),Pittsburgh Sleep Quality Index(PSQI)and 10-item Kessler Psychological Distress Scale(K10)were adopted in the survey.Single factor analysis,correlation analysis and multiple linear regression were used to analyze the data.The effect relationship between the variables was tested using Bootstrap's mediated effects test.Results A total of 1 864 participants were included in the study.The average score was 15.53±4.47 for ADL,5.60±3.71 for PSQI and 15.50±6.28 for K10.The rate of ADL impairment,poor sleep quality,poor and very poor mental health of the elderly were 23.6%,27.3%,11.9%and 4.9%,respectively.ADL and sleep quality were all positively correlated with mental health(r=0.321,P<0.001;r=0.466,P<0.001);ADL was positively correlated with sleep quality(r=0.294,P<0.001).Multiple linear results of factors influencing mental health showed that ADL(β= 0.457,95%CI:0.341-0.573),sleep quality(β =0.667,95%CI:0.598-0.737)and mental health were positively correlated(P<0.001).Sleep quality partially mediated the relationship between ADL and mental health(95%CI:0.078-0.124)with an effect size of 33.0%.Conclusion Sleep quality is a mediator between ADL and mental health among community elderly people.Improving ADL and sleep quality may improve mental health in the population.
10.Advances in Salmonella -mediated targeted tumor therapy
Zhao-rui LÜ ; Dong-yi LI ; Yu-yang ZHU ; He-qi HUANG ; Hao-nan LI ; Zi-chun HUA
Acta Pharmaceutica Sinica 2024;59(1):17-24
italic>Salmonella has emerged as a promising tumor-targeting strategy in recent years due to its good tumor targeting ability and certain safety. In order to further optimize its therapeutic effect, scientists have tried to modify