1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Network pharmacology-based mechanism of combined leech and bear bile on hepatobiliary diseases
Chen GAO ; Yu-shi GUO ; Xin-yi GUO ; Ling-zhi ZHANG ; Guo-hua YANG ; Yu-sheng YANG ; Tao MA ; Hua SUN
Acta Pharmaceutica Sinica 2025;60(1):105-116
In order to explore the possible role and molecular mechanism of the combined action of leech and bear bile in liver and gallbladder diseases, this study first used network pharmacology methods to screen the components and targets of leech and bear bile, as well as the related target genes of liver and gallbladder diseases. The selected key genes were subjected to interaction network and GO/KEGG enrichment analysis. Then, using sodium oleate induced HepG2 cell lipid deposition model and
3.Effects of Modified Guomin Decoction (加味过敏煎) on Traditional Chinese Medicine Syndromes and Quality of Life in Patients with Mild to Moderate Atopic Dermatitis of Heart Fire and Spleen Deficiency Pattern:A Randomized,Double-Blind,Placebo-Controlled Trial
Jing NIE ; Rui PANG ; Lingjiao QIAN ; Hua SU ; Yuanwen LI ; Xinyuan WANG ; Jingxiao WANG ; Yi YANG ; Yunong WANG ; Yue LI ; Panpan ZHANG
Journal of Traditional Chinese Medicine 2025;66(10):1031-1037
ObjectiveTo observe the clinical efficacy and safety of Modified Guomin Decoction (加味过敏煎, MGD) in patients with mild to moderate atopic dermatitis (AD) of the traditional Chinese medicine (TCM) pattern of heart fire and spleen deficiency, and to explore its possible mechanisms. MethodsIn this randomized, double-blind, placebo-controlled study, 72 patients with mild to moderate AD and the TCM pattern of heart fire and spleen deficiency were randomly divided into a treatment group and a control group, with 36 cases in each group. The treatment group received oral MGD granules combined with topical vitamin E emulsion, while the control group received oral placebo granules combined with topical vitamin E treatment. Both groups were treated twice daily for 4 weeks. Clinical efficacy, TCM syndrome scores, Visual Analogue Scale (VAS) for pruritus, Dermatology Life Quality Index (DLQI) scores, Scoring Atopic Dermatitis (SCORAD) and serum biomarkers, including interleukin-33 (IL-33), interleukin-1β (IL-1β), immunoglobulin E (IgE), and tumor necrosis factor-α (TNF-α) were compared before and after treatment. Safety indexes was also assessed. ResultsThe total clinical effective rates were 77.78% (28/36) in the treatment group and 38.89% (14/36) in the control group, with cure rates of 19.44% (7/36) and 2.78% (1/36), respectively. The treatment group showed significantly better clinical outcomes compared to the control group (P<0.05). The treatment group exhibited significant reductions in total TCM syndrome scores, including erythema, edema, papules, scaling, lichenification, pruritus, irritability, insomnia, abdominal distension, and fatigue scores, as well as reductions in VAS, DLQI, SCORAD, and serum IgE and IL-33 levels (P<0.05 or P<0.01). Compared to the control group, the treatment group had significantly better improvements in all indicators except for insomnia (P<0.05). No adverse events occurred in either group. ConclusionMGD is effective and safe in treating mild to moderate AD patients with heart fire and spleen deficiency pattern. It significantly alleviates pruritus, improves TCM syndromes and quality of life, and enhances clinical efficacy, possibly through modulation of immune responses.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
8.Triglyceride-glucose index and homocysteine in association with the risk of stroke in middle-aged and elderly diabetic populations
Xiaolin LIU ; Jin ZHANG ; Zhitao LI ; Xiaonan WANG ; Juzhong KE ; Kang WU ; Hua QIU ; Qingping LIU ; Jiahui SONG ; Jiaojiao GAO ; Yang LIU ; Qian XU ; Yi ZHOU ; Xiaonan RUAN
Shanghai Journal of Preventive Medicine 2025;37(6):515-520
ObjectiveTo investigate the triglyceride-glucose (TyG) index and the level of serum homocysteine (Hcy) in association with the incidence of stroke in type 2 diabetes mellitus (T2DM) patients. MethodsBased on the chronic disease risk factor surveillance cohort in Pudong New Area, Shanghai, excluding those with stroke in baseline survey, T2DM patients who joined the cohort from January 2016 to October 2020 were selected as the research subjects. During the follow-up period, a total of 318 new-onset ischemic stroke patients were selected as the case group, and a total of 318 individuals matched by gender without stroke were selected as the control group. The Cox proportional hazards regression model was used to adjust for confounding factors and explore the serum TyG index and the Hcy biochemical indicator in association with the risk of stroke. ResultsThe Cox proportional hazards regression results showed that after adjusting for confounding factors, the risk of stroke in T2DM patients with 10 μmol·L⁻¹
9.Electroacupuncture at Sensitized Acupoints Relieves Somatic Referred Pain in Colitis Rats by Inhibiting Sympathetic-Sensory Coupling to Interfere with 5-HT Signaling Pathway.
Ying YANG ; Jin-Yu QU ; Hua GUO ; Hai-Ying ZHOU ; Xia RUAN ; Ying-Chun PENG ; Xue-Fang SHEN ; Jin XIONG ; Yi-Li WANG
Chinese journal of integrative medicine 2024;30(2):152-162
OBJECTIVE:
To investigate whether electroacupuncture (EA) at sensitized acupoints could reduce sympathetic-sensory coupling (SSC) and neurogenic inflammatory response by interfering with 5-hydroxytryptamine (5-HT)ergic neural pathways to relieve colitis and somatic referred pain, and explore the underlying mechanisms.
METHODS:
Rats were treated with 5% dextran sodium sulfate (DSS) solution for 7 days to establish a colitis model. Twelve rats were randomly divided into the control and model groups according to a random number table (n=6). According to the "Research on Rat Acupoint Atlas", sensitized acupoints and non-sensitized acupoints were determined. Rats were randomly divided into the control, model, Zusanli-EA (ST 36), Dachangshu-EA (BL 25), and Xinshu (BL 15) groups (n=6), as well as the control, model, EA, and EA + GR113808 (a 5-HT inhibitor) groups (n=6). The rats in the control group received no treatment. Acupuncture was administered on 2 days after modeling using the stimulation pavameters: 1 mA, 2 Hz, for 30 min, with sparse and dense waves, for 14 consecutive days. GR113808 was injected into the tail vein at 5 mg/kg before EA for 10 min for 7 consecutive days. Mechanical sensitivity was assessed with von Frey filaments. Body weight and disease activity index (DAI) scores of rats were determined. Hematoxylin and eosin staining was performed to observe colon histopathology. SSC was analyzed by immunofluorescence staining. Immunohistochemical staining was performed to detect 5-HT and substance P (SP) expressions. The calcitonin gene-related peptide (CGRP) in skin tissue and tyrosine hydroxylase (TH) protein levels in DRG were detected by Western blot. The levels of hyaluronic acid (HA), bradykinin (BK), prostaglandin I2 (PGI2) in skin tissue, 5-HT, tryptophan hydroxylase 1 (TPH1), serotonin transporters (SERT), 5-HT 3 receptor (5-HT3R), and 5-HT 4 receptor (5-HT4R) in colon tissue were measured by enzyme-linked immunosorbent assay (ELISA).
RESULTS:
BL 25 and ST 36 acupoints were determined as sensitized acupoints, and BL 15 acupoint was used as a non-sensitized acupoint. EA at sensitized acupoints improved the DAI score, increased mechanical withdrawal thresholds, and alleviated colonic pathological damage of rats. EA at sensitized acupoints reduced SSC structures and decreased TH and CGRP expression levels (P<0.05). Furthermore, EA at sensitized acupoints reduced BK, PGI2, 5-HT, 5-HT3R and TPH1 levels, and increased HA, 5-HT4R and SERT levels in colitis rats (P<0.05). GR113808 treatment diminished the protective effect of EA at sensitized acupoints in colitis rats (P<0.05).
CONCLUSION
EA at sensitized acupoints alleviated DSS-induced somatic referred pain in colitis rats by interfering with 5-HTergic neural pathway, and reducing SSC inflammatory response.
Rats
;
Animals
;
Electroacupuncture
;
Rats, Sprague-Dawley
;
Serotonin
;
Acupuncture Points
;
Pain, Referred
;
Calcitonin Gene-Related Peptide
;
Signal Transduction
;
Colitis/therapy*
;
Indoles
;
Sulfonamides
10.Multisensory Conflict Impairs Cortico-Muscular Network Connectivity and Postural Stability: Insights from Partial Directed Coherence Analysis.
Guozheng WANG ; Yi YANG ; Kangli DONG ; Anke HUA ; Jian WANG ; Jun LIU
Neuroscience Bulletin 2024;40(1):79-89
Sensory conflict impacts postural control, yet its effect on cortico-muscular interaction remains underexplored. We aimed to investigate sensory conflict's influence on the cortico-muscular network and postural stability. We used a rotating platform and virtual reality to present subjects with congruent and incongruent sensory input, recorded EEG (electroencephalogram) and EMG (electromyogram) data, and constructed a directed connectivity network. The results suggest that, compared to sensory congruence, during sensory conflict: (1) connectivity among the sensorimotor, visual, and posterior parietal cortex generally decreases, (2) cortical control over the muscles is weakened, (3) feedback from muscles to the cortex is strengthened, and (4) the range of body sway increases and its complexity decreases. These results underline the intricate effects of sensory conflict on cortico-muscular networks. During the sensory conflict, the brain adaptively decreases the integration of conflicting information. Without this integrated information, cortical control over muscles may be lessened, whereas the muscle feedback may be enhanced in compensation.
Humans
;
Muscle, Skeletal
;
Electromyography/methods*
;
Electroencephalography/methods*
;
Brain
;
Brain Mapping

Result Analysis
Print
Save
E-mail