1.Changes in the body shape and ergonomic compatibility for functional dimensions of desks and chairs for students in Harbin during 2010-2024
Chinese Journal of School Health 2025;46(3):315-320
Objective:
To analyze the change trends in the body shape indicators and proportions of students in Harbin from 2010 to 2024, and to investigate ergonomic compatibility of functional dimensions of school desks and chairs with current student shape indicators, so as to provide a reference for revising furniture standards of desks and chairs.
Methods:
Between September and November of both 2010 and 2024, a combination of convenience sampling and stratified cluster random sampling was conducted across three districts in Harbin, yielding samples of 6 590 and 6 252 students, respectively. Anthropometric shape indicators cluding height, sitting height, crus length, and thigh length-and their proportional changes were compared over the 15-year period. The 2024 data were compared with current standard functional dimensions of school furniture. The statistical analysis incorporated t-test and Mann-Whitney U- test.
Results:
From 2010 to 2024, average height increased by 1.8 cm for boys and 1.5 cm for girls; sitting height increased by 1.5 cm for both genders; crus length increased by 0.3 cm for boys and 0.4 cm for girls; and thigh length increased by 0.5 cm for both genders. The ratios of sitting height to height, and sitting height to leg length increased by less than 0.1 . The difference between desk chair height and 1/3 sitting height ranged from 0.4-0.8 cm. Among students matched with size 0 desks and chairs, 22.0% had a desk to chair height difference less than 0, indicating that the desk to chair height difference might be insufficient for taller students. The differences between seat height and fibular height ranged from -1.4 to 1.1 cm; and the differences between seat depth and buttock popliteal length ranged from -9.8 to 3.4 cm. Among obese students, the differences between seat width and 1/2 hip circumference ranged from -20.5 to -8.7 cm, while it ranged from -12.2 to -3.8 cm among non obese students.
Conclusion
Current furniture standards basically satisfy hygienic requirements; however, in the case of exceptionally tall and obese students, ergonomic accommodations such as adaptive seating allocation or personalized adjustments are recommended to meet hygienic requirements.
2.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis
Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
Five saponins were isolated from the kernels of
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
8. Study on spleen strengthening effects and mechanisms of Atractylodes chinensis and Atractylodes coreana
Ming-Yang CUI ; Yi-Hui DING ; Yang QU ; Zhi-Li XU ; Qian CAI
Chinese Pharmacological Bulletin 2024;40(1):181-188
Aim To analyze the differences in plasma biomarkers and metabolic pathways between Atractylodes chinensis and Atractylodes coreana after intervention in spleen deficiency rats, and discuss the spleen strengthening mechanism of the two from a non targeted metabolomics perspective. Methods A spleen deficiency model was established in SD rats using a composite factor method of improper diet, excessive fatigue, and bitter cold diarrhea. To determine the content of gastrointestinal and immunological indicators, UHPLC-QE-MS technology was used, combined with principal component analysis (PC A) and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) methods to search for biomarkers in plasma of spleen deficiency rats, and metabolic pathways were induced using the Pathway database. Results After administration of Atractylodes chinensis and Atractylodes coreana, various indicators in plasma of spleen deficiency rats showed varying degrees of regression. Metabolomics analysis showed that Atractylodes chinensis and Atractylodes coreana respectively recalled 70 and 82 plasma differential metabolites. Atractylodes chinensis mainly regulated two metabolic pathways : "Glycine, serine, and threonine metabolism, and "Thiamine metabolism". Atractylodes coreana mainly regulated five metabolic pathways, "Glycine, serine, and threonine metabolism", "Thiamine metabolism, "Pyrimidine metabolism", "Butanoate metabolism", and "Riboflavin metabolism". Conclusions Both Atractylodes chinensis and Atractylodes coreana have certain regulatory effects on spleen deficiency rats, and their mechanism of action may be related to regulating metabolic pathways such as "Glycine, serine, and threonine metabolism, and "Thiamine metabolism"in spleen deficiency.
9.Follow up study of the association between bedroom light at night exposure and body mass index in children
LI Qi, ZHOU Yi, DING Wenqin, ZUO Min, XU Yuxiang, TAO Fangbiao, SUN Ying
Chinese Journal of School Health 2024;45(4):475-478
Objective:
To explore the association between bedroom light at night (LAN) exposure and body mass index (BMI) in children at 1 year follow up, so as to provide new strategies for obesity prevention.
Methods:
From December 2021 to May 2022, cluster random sampling was conducted, involving 648 children from two primary schools in Tianchang, Chuzhou City, Anhui Province, China, to assess bedroom LAN exposure of children during sleep. A questionnaire survey and physical examination were carried out in May 2022. Multivariate linear regression was performed to analyze the correlation between bedroom LAN exposure and BMI variable quantity at 1 year follow up (May, 2023).
Results:
The median intensity of bedroom LAN exposure during the sleep episode was [1.11(0.35,3.24)lx] in children. The proportion of the sample exposed to an average light intensity of ≥3 lx was 27.5%, while 19.0% was exposed to a LAN intensity of ≥5 lx during the sleep episode. In the multivariable linear regression, after adjusting for covariates, including sex, baseline age, sleep duration, family monthly income, and maternal education level, exposure to a 1 h-average post bedtime LAN intensity of ≥3 lx ( β=0.25, 95%CI =0.05-0.44) and LAN≥5 lx ( β=0.34, 95% CI = 0.12-0.55) was associated with a gain of 0.25 and 0.34 kg/m 2, respectively, in the children s BMI at the 1 year follow up ( P < 0.05).
Conclusions
A positive correlation was found between bedroom LAN exposure and BMI variable quantity at 1 year follow up in children. Thus, reduced bedroom LAN exposure might be useful for interventions aimed at obesity prevention.
10.Construction and finite element analysis of normal and osteoporotic hip models
Sutong GUO ; Dehong FENG ; Yu GUO ; Ling WANG ; Yujian DING ; Yi LIU ; Zhengying QIAN ; Mingyang LI
Chinese Journal of Tissue Engineering Research 2024;28(9):1342-1346
BACKGROUND:Bone mineral density is the clinical gold standard for determining bone strength,but bone mineral density is less sensitive to changes in bone mass,with large changes in bone mineral density only occurring when bone mass is significantly reduced,so bone mineral density has limited ability to predict changes in bone strength and fracture risk. OBJECTIVE:A model of the normal and osteoporotic hip joint was developed to analyze the stresses and deformation in the hip of normal and osteoporotic patients under single-leg standing conditions. METHODS:A healthy adult female volunteer at the age of 36 years was selected as the study subject.The CT data of the hip joint of this volunteer were obtained and saved in DICOM format.The hip joint model was reconstructed in three dimensions,and the material properties were assigned by the gray value assignment method to obtain the normal and osteoporotic hip joint models according to the empirical formula.The same boundary conditions and loads were set to simulate the stresses and deformation in the normal and osteoporotic hip joints in the single-leg standing position. RESULTS AND CONCLUSION:(1)In the finite element model of the normal and osteoporotic hip,the stress distribution was more concentrated in the medial region of the femoral neck.(2)In the hip bone,the stress distribution was mainly concentrated in the upper part of the acetabulum.(3)The stress peaks in the medial femoral neck and upper acetabulum were larger in the normal hip model than in the osteoporotic hip model,probably due to the reduced bone strength of the osteoporotic bone.(4)The peak Von Mises of both normal and osteoporotic hip models were concentrated on the medial femoral neck,and the peak Von Mises of the hip bone was smaller,indicating that the overall effect of osteoporosis on hip bone stresses was relatively small.(5)In terms of deformation in the single-leg standing position,the maximum deformation in the normal hip model was located at the acetabulum and femoral head,and the maximum deformation was located at the upper part of the greater trochanter of the femur.(6)It is suggested that the finite element analysis method to model the values of parameters related to bone tissue in osteoporosis may improve clinical prediction of bone strength changes and fracture risk.It is explained from the biomechanical view that the intertrochanteric femur and femoral neck are good sites for osteoporotic hip fractures.


Result Analysis
Print
Save
E-mail