1.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
2.Exploring Vascular Recruitment in Tracheobronchial Adenoid Cystic Carcinoma from Perspective of Abnormal Collateral
Jun TENG ; Lei LI ; Junyan XIA ; Yi LUO ; Qinyan HONG ; Shuiping CHEN ; Hongwu WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):260-269
Tracheobronchial adenoid cystic carcinoma (TACC) is a low-grade malignant tumor originating from the airway mucosa. Despite its slow progression,it is characterized by high invasiveness,frequent recurrence,and a strong tendency for metastasis. Preclinical studies have shown that vascular-targeted therapy holds significant potential. However,an effective systemic treatment for TACC has not been established yet. This study explored TACC from the perspective of "Feiji" in traditional Chinese medicine (TCM) as the starting point. It deeply investigated the mechanisms of abnormal collaterals and tumor vascular recruitment and further elaborated on the theoretical connection between abnormal collaterals and tumor vascular recruitment. Firstly,collateral hyperactivity led to disordered and erratic pulmonary collaterals. Their abnormal structures were similar to the disorderly and tortuous nature of tumor (pseudo)angiogenesis. This resulted in imbalances in the functions of circulation,perfusion,and reverse injection of the pulmonary collaterals,and then led to unrestrained collateral dysfunction and the accumulation of pathogenic factors. Secondly,the remodeling of the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT) in TACC were critical processes in vascular co-option (VCO),representing the micro-level manifestation of the displacement of nutrient and defense. During this process,ECM remodeling made TACC cells more likely to hijack normal blood vessels,creating a complex vascular microenvironment conducive to tumor growth. In terms of treatment,this study proposed a TCM strategy of "regulating collaterals to expel pathogenic factors and nourishing collaterals to strengthen the healthy Qi",and listed potential TCM. These were intended to regulate the Qi and blood in the collaterals,repair the functions of abnormal collaterals,and intervene in the vascular recruitment process of TACC. Future research should focus on improving the TCM clinical syndrome characteristics of TACC. Through modern molecular biology techniques,it is necessary to deeply analyze the micro-level pattern of vascular recruitment in TACC. This would enrich the understanding of the profound connection between abnormal collaterals and tumor vascular recruitment,providing empirical evidence for TCM-targeted therapies for vascular recruitment in TACC.
3.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
4.Component Analysis of Anmeidan and Its Mechanism in Regulating ERK1/2/MNK/ELF4E Signaling Pathway to Improve Circadian Rhythm in Insomnia Rats
Yi GAO ; Bo XU ; Jing XIA ; Linlin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):44-53
ObjectiveTo identify the main chemical constituents of Anmeidan (AMD) and to explore the mechanism of AMD in regulating the extracellular signal-regulated kinase 1/2 (ERK1/2)/mitogen-activated protein kinase (MAPK)-interacting serine/threonine-protein kinase (MNK)/eukaryotic translation initiation factor 4E (eIF4E) signaling pathway to improve circadian rhythm disturbances in insomnia rats. MethodsThe main chemical constituents of AMD were identified using ultra-high-performance liquid chromatography-linear ion trap-electrostatic orbital trap mass spectrometry (UPLC-LTQ/Orbitrap/MS) in combination with reference standards. Sixty male Sprague-Dawley (SD) rats were randomly divided into control, model, melatonin, and AMD low-, medium-, and high-dose groups, with 10 rats in each group. Except for the control group, all rats were administered p-chlorophenylalanine via intraperitoneal injection to establish an insomnia model. The activity-rest rhythm of rats was assessed using the open field test and circadian rhythm test. Hematoxylin-eosin (HE) staining and Nissl staining were used to observe structural changes in hypothalamic neurons. Immunofluorescence, real-time quantitative polymerase chain reaction (Real-time PCR), and Western blot analysis were employed to detect mRNA and protein expression levels of ERK1/2, MNK, and eIF4E in the hypothalamus. ResultsA total of 50 chemical components, including flavonoids, phenylpropanoids, triterpenoid saponins, alkaloids, and lignans, were identified in AMD. Compared with the control group, the model group exhibited significantly increased total distance traveled, average speed, central area residence time, and cumulative rearing time (P<0.01), as well as prolonged cumulative activity time and total activity time in both light and dark phases (P<0.01). Hypothalamic neurons in the model group were sparsely arranged, reduced in number, and exhibited nuclear disappearance or nucleolar rupture, with a significantly increased apoptosis index (P<0.01). The cytoplasm appeared turbid, Nissl body staining was lighter, and the Nissl body apoptosis index was significantly increased (P<0.01). The mRNA expression levels of ERK1/2, MNK, and eIF4E were significantly decreased (P<0.01), along with a significant reduction in protein expression levels of ERK1/2, phosphorylated ERK1/2 (p-ERK1/2), MNK, phosphorylated MNK (p-MNK), eIF4E, and phosphorylated eIF4E (p-eIF4E) (P<0.01). Compared with the model group, the total distance, average speed, central area residence time and body upright cumulative time of the AMD high-dose group were significantly reduced (P<0.01). The total distance, average speed and body upright cumulative time of the AMD medium-dose group were significantly reduced (P<0.01). The cumulative time of light activity and total time of activity in each dose group of AMD were significantly shortened (P<0.01). The cumulative time of dark activity in the high-dose group of AMD was prolonged (P<0.01). The neurons in the middle and high dose groups of AMD were closely arranged, the number of neurons increased, and the apoptosis index of hypothalamic cells decreased significantly (P<0.05, P<0.01). The cytoplasm of the low, middle and high dose groups of AMD was clear, the color of Nissl body became darker, and the apoptosis index of Nissl body decreased significantly (P<0.01). The expression of ERK1/2, MNK and eIF4E mRNA and protein in the hypothalamus of the middle and high dose groups of AMD increased significantly (P<0.05, P<0.01). ConclusionAMD primarily contains 50 chemical constituents, including flavonoids, phenylpropanoids, and triterpenoid saponins. It exhibits a "synergistic enhancement" effect through multiple components and multiple pathways to improve insomnia. AMD ameliorates circadian rhythm disturbances in p-chlorophenylalanine-induced insomnia rats by upregulating ERK1/2/MNK/eIF4E signaling pathway-related proteins.
5.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
6.Resveratrol activates extracellular-regulated protein kinase 5 signaling protein to promote proliferation of mouse MC3T3-E1 cells
Yongkang NIU ; Zhiwei FENG ; Yaobin WANG ; Zhongcheng LIU ; Dejian XIANG ; Xiaoyuan LIANG ; Zhi YI ; Hongwei ZHAN ; Bin GENG ; Yayi XIA
Chinese Journal of Tissue Engineering Research 2025;29(5):908-916
BACKGROUND:The extracellular-regulated protein kinase 5(ERK5)signaling protein is essential for the survival of organisms,and resveratrol can promote osteoblast proliferation through various pathways.However,whether resveratrol can regulate osteoblast function through the ERK5 signaling protein needs further verification. OBJECTIVE:To explore the regulatory effect of ERK5 on the proliferation of MC3T3-E1 cells and related secreted proteins,and to further verify whether resveratrol can complete the above process by activating ERK5. METHODS:Mouse MC3T3-E1 preosteoblasts were treated with complete culture medium,XMD8-92(an ERK5 inhibitor),epidermal growth factor(an ERK5 activator),resveratrol alone,XMD8-92+EGF,and resveratrol+XMD8-92,respectively.Western blot assay was used to detect the expression of ERK5 and p-ERK5 proteins,proliferation-related proteins Cyclin D1,CDK4 and PCNA,and osteoblast-secreted proteins osteoprotegerin and receptor activator of nuclear factor-κB ligand in MC3T3-E1 cells of each group.The fluorescence intensity of ERK5,osteoprotegerin and receptor activator of nuclear factor-κB ligand in each group was detected by cell immunofluorescence staining,and cell proliferation was detected by EdU staining,respectively.The appropriate concentration and time of resveratrol intervention in MC3T3-E1 cells were determined by cell morphology observation and cell counting kit-8 assay. RESULTS AND CONCLUSION:The activation of ERK5 signaling protein could effectively promote the proliferation of MC3T3-E1 cells,up-regulate the osteoprotegerin/receptor activator of nuclear factor-κB ligand ratio.The appropriate concentration and time for resveratrol intervention in MC3T3-E1 cells was 5 μmol/L and 24 hours,respectively.Resveratrol could activate ERK5 signaling protein,thereby promoting osteoblast proliferation and up-regulating the osteoprotegerin/RANKL ratio.All these results indicate that resveratrol can promote the proliferation of MC3T3-E1 cells and up-regulate the osteoprotegerin/RANKL ratio by activating the ERK5 signaling protein.
7.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
8.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
9.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
10.Improvement effects and mechanism of Xiangsha yiwei tang on gastric mucosal injury in rats with chronic atrophic gastritis
Pengfei XIA ; Di JIN ; Jin LIANG ; Yi YU ; Jinjun DU ; Zhanyong JIN ; Jun FANG ; Xia YANG ; Huiwu LIU
China Pharmacy 2025;36(11):1311-1316
OBJECTIVE To investigate the improvement effects and mechanism of Xiangsha yiwei tang on gastric mucosal injury in rats with chronic atrophic gastritis (CAG). METHODS Rats were randomly assigned into normal control group, model group, Xiangsha yiwei tang low-, medium- and high-dose groups (6, 12, 18 g/kg, calculated by crude drug), and high-dose group of Xiangsha yiwei tang+740 Y-P [Xiangsha yiwei tang 18 g/kg+transforming growth factor β1/phosphatidyl inositol 3 kinase/ protein kinase B(TGF-β1/PI3K/Akt) pathway activator group 740 Y-P 10 mg/kg], with 18 rats in each group. Rats in each group were administered the corresponding drugs via oral gavage or injection, once daily, for 4 consecutive weeks. Gastric mucosal blood flow, the levels of serum gastrointestinal hormones [including motilin (MTL), gastrin (GAS), and pepsinogen (PP)], as well as inflammatory cytokines [including tumor necrosis factor- α (TNF- α), interleukin-1β (IL-1β), IL-6] in rats were measured. Pathological damage to gastric mucosal tissue was observed in rats; the apoptotic rate of gastric mucosal cells was detected. The expressions of TGF-β1/PI3K/Akt signaling pathway-related proteins and apoptosis-related proteins [including B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax)] in the gastric mucosal tissues of rats were assessed. RESULTS Compared with normal control group, model group had abnormal gastric mucosal tissue structure, with shedding of gastric mucosal epithelial cells, and prominent infiltration of inflammatory cells. Gastric mucosal blood flow, the serum levels of MTL, GAS, PP, and Bcl-2 protein expression were lowered significantly, while serum levels of TNF-α, IL-1β and IL-6, apoptosis rate, protein expressions of Bax and TGF-β1, the phosphorylations of PI3K and Akt were increased significantly (P<0.05). Compared with model group, Xiangsha yiwei decoction groups exhibited attenuated histopathological injuries in gastric mucosal tissues, reduced inflammatory cell infiltration, and significant improvements in the aforementioned quantitative parameters (P<0.05). Compared with high-dose group of Xiangsha yiwei tang, high-dose group of Xiangsha yiwei decoction combined with 740 Y-P exhibited significantly aggravated histopathological injuries in gastric mucosal tissues, and the aforementioned quantitative parameters were markedly reversed (P<0.05). CONCLUSIONS Xiangsha yiwei tang can alleviate gastric mucosal damage in CAG rats, and its mechanism of action is related to the inhibition of TGF-β1/PI3K/Akt signaling pathway.

Result Analysis
Print
Save
E-mail